# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
05-19.SCL | 5 | 5 out of 19-tET |
05-24.SCL | 5 | 5 out of 24-tET, symmetrical |
07-19.SCL | 7 | 7 out of 19-tET, major |
08-19.SCL | 8 | 8 out of 19-tET |
09-19.SCL | 9 | 9 out of 19-tET |
10-19.SCL | 10 | 10 out of 19-tET. For 9 out of 19 discard degree 3 |
11-19-MCLAREN.SCL | 11 | 11 out of 19-tET, Brian McLaren. Asc: 311313313 Desc: 313131313 |
11-19.SCL | 11 | 11 out of 19-tET |
12-19.SCL | 12 | 12 out of 19-tET scale from Mandelbaum's dissertation |
12-31.SCL | 12 | 12 out of 31-tET (mean-tone) |
12-43.SCL | 12 | 12 out of 43-tET (1/5-comma mean-tone) |
12-50.SCL | 12 | 12 out of 50-tET |
12-91.SCL | 12 | 12 out of 91-tET (1/7-comma mean-tone) |
13-19.SCL | 13 | 13 out of 19-tET |
14-19.SCL | 14 | 14 out of 19-tET |
14-26.SCL | 14 | Two interlaced diatonic in 26-tET, tetrachordal. Paul Erlich (1996) |
14-26A.SCL | 14 | Two interlaced diatonic in 26-tET, maximally even. Paul Erlich (1996) |
17-53.SCL | 17 | 17 out of 53-tET, Arabic Pythagorean scale |
19-31.SCL | 19 | 19 out of 31-tET |
19-31JI.SCL | 19 | A septimal interpretation of 19 out of 31 tones, after Wilson, XH7+8 |
19-36.SCL | 19 | 19 out of 36-tET, Tomasz Liese, Tuning List, 1997 |
19-50.SCL | 19 | 19 out of 50-tET |
19-53.SCL | 19 | 19 out of 53-tET by Larry H. Hanson, 1978 |
19-ANY.SCL | 19 | 2 out of 1/7 1/5 1/3 1 3 5 7 CPS |
20-31.SCL | 20 | 20 out of 31-tET |
21-ANY.SCL | 21 | 1.3.5.7.9.11.13 2)7 21-any, 1.3 tonic |
22-53.SCL | 22 | 22 shrutis out of 53-tET |
24-36.SCL | 24 | 12 and 18-tET mixed |
24-60.SCL | 24 | 12 and 15-tET mixed |
28-ANY.SCL | 26 | 6)8 28-any from 1.3.5.7.9.11.13.15, only 26 tones |
30-29-MIN3.SCL | 9 | 30/29 x 29/28 x 28/27 plus 6/5 |
56-ANY.SCL | 48 | 3)8 56-any from 1.3.5.7.9.11.13.15, 1.3.5 tonic, only 48 notes |
70-ANY.SCL | 70 | 1.3.5.7.11.13.17.19 4)8 70-any, tonic 1.3.5.7 |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
ABELL1.SCL | 12 | Ross Abell's French Baroque Meantone 1, a'=520 |
ABELL2.SCL | 12 | Ross Abell's French Baroque Meantone 2, a'=520 |
ABELL3.SCL | 12 | Ross Abell's French Baroque Meantone 3, a'=520 |
ABELL4.SCL | 12 | Ross Abell's French Baroque Meantone 4, a'=520 |
ABELL5.SCL | 12 | Ross Abell's French Baroque Meantone 5, a'=520 |
ABELL6.SCL | 12 | Ross Abell's French Baroque Meantone 6, a'=520 |
ABELL7.SCL | 12 | Ross Abell's French Baroque Meantone 7, a'=520 |
ABELL8.SCL | 12 | Ross Abell's French Baroque Meantone 8, a'=520 |
ABELL9.SCL | 12 | Ross Abell's French Baroque Meantone 9, a'=520 |
AD-DIK.SCL | 24 | Amin Ad-Dik, d'Erlanger, vol 5, p.42 |
ADJENG.SCL | 5 | Soeroepan adjeng |
AEOLIC.SCL | 7 | Ancient Greek Aeolic, also tritriadic scale of the 54:64:81 triad |
AFRICA-W.SCL | 7 | Observed balafon tuning from West-Africa |
AFRICA-W2.SCL | 7 | Pitt-River's balafon tuning from West-Africa |
AFRICA-X.SCL | 10 | African Yaswa xylophones (idiophone; calbash resonators with membrane) |
AGRICOLA.SCL | 12 | Agricola's Monochord |
AL-DIN.SCL | 35 | Safi al-Din's complete lute tuning on 5 strings 4/3 apart |
AL-DIN_19.SCL | 19 | Arabic scale by Safi al-Din |
AL-FARABI.SCL | 7 | Al-Farabi Syn Chrom |
AL-FARABI_19.SCL | 19 | Arabic scale by Al Farabi |
AL-FARABI_BLUE.SCL | 7 | Another tuning from Al Farabi, c700 AD |
AL-FARABI_CHROM.SCL | 7 | Al Farabi's Chromatic c700 AD |
AL-FARABI_CHROM2.SCL | 7 | Al-Farabi's Chromatic permuted |
AL-FARABI_DIAT.SCL | 7 | Al-Farabi's Diatonic |
AL-FARABI_DIAT2.SCL | 7 | Old Phrygian, permuted form of Al-Farabi's reduplicated 10/9 diatonic genus |
AL-FARABI_DIV.SCL | 10 | Al Farabi's 10 intervals for the division of the tetrachord |
AL-FARABI_DIV2.SCL | 12 | Al-Farabi's tetrachord division, incl. extra 2187/2048 & 19683/16384 |
AL-FARABI_DIVO.SCL | 24 | Al Farabi's theoretical octave division with identical tetrachords, 10th c. |
AL-FARABI_DOR.SCL | 7 | Dorian mode of Al-Farabi's 10/9 Diatonic |
AL-FARABI_DOR2.SCL | 7 | Dorian mode of Al-Farabi's Diatonic |
AL-FARABI_G1.SCL | 7 | Al-Farabi's Greek genus conjunctum medium, Land |
AL-FARABI_G10.SCL | 7 | Al-Farabi's Greek genus chromaticum forte |
AL-FARABI_G11.SCL | 7 | Al-Farabi's Greek genus chromaticum mollissimum |
AL-FARABI_G12.SCL | 7 | Al-Farabi's Greek genus mollissimum ordinantium |
AL-FARABI_G3.SCL | 7 | Al-Farabi's Greek genus conjunctum primum |
AL-FARABI_G4.SCL | 7 | Al-Farabi's Greek genus forte duplicatum primum |
AL-FARABI_G5.SCL | 7 | Al-Farabi's Greek genus conjunctum tertium, or forte aequatum |
AL-FARABI_G6.SCL | 7 | Al-Farabi's Greek genus forte disjunctum primum |
AL-FARABI_G7.SCL | 7 | Al-Farabi's Greek genus non continuum acre |
AL-FARABI_G8.SCL | 7 | Al-Farabi's Greek genus non continuum mediocre |
AL-FARABI_G9.SCL | 7 | Al-Farabi's Greek genus non continuum laxum |
AL-HWARIZMI.SCL | 6 | Al-Hwarizmi's tetrachord division |
AL-KINDI.SCL | 6 | Al-Kindi's tetrachord division |
ALBION.SCL | 12 | Terry Riley's Harp of New Albion scale, inverse of Malcolm's Monochord |
ALEMBERT.SCL | 12 | Jean-Le Rond d'Alembert modified meantone (1726) |
ALTERNATE.SCL | 12 | alternate? 7-limit |
ALVES.SCL | 13 | Bill Alves, tuning for "Instantaneous Motion", 1/1 vol. 6/3 |
ANGKLUNG.SCL | 8 | Scale of an anklung set from Tasikmalaya. 1/1=174 Hz |
ANON1.SCL | 12 | Anonymus: Pro clavichordiis faciendis, Erlangen 15th century |
ARABIC.SCL | 17 | Arabic 17-tone Pythagorean mode, Safi al-Din |
ARABIC1.SCL | 12 | From Fortuna. Try C or G major |
ARABIC2.SCL | 12 | From Fortuna. Try C or F minor |
ARABIC_KINDI.SCL | 14 | Arabic mode by al-Kindi |
ARABIC_MAUSILI.SCL | 11 | Arabic mode by Ishaq al-Mausili, ? - 850 AD |
ARCH_CHROM.SCL | 7 | Archytas' Chromatic |
ARCH_CHROMC2.SCL | 14 | Product set of 2 of Archytas' Chromatic |
ARCH_DOR.SCL | 8 | Dorian mode of Archytas' Chromatic with added 16/9 |
ARCH_ENH.SCL | 7 | Archytas' Enharmonic |
ARCH_ENH2.SCL | 8 | Archytas' Enharmonic with added 16/9 |
ARCH_ENH3.SCL | 7 | Complex 9 of p. 113 based on Archytas's Enharmonic |
ARCH_ENHP.SCL | 7 | Permutation of Archytas's Enharmonic with the 36/35 first |
ARCH_ENHT.SCL | 7 | Complex 6 of p. 113 based on Archytas's Enharmonic |
ARCH_ENHT2.SCL | 7 | Complex 5 of p. 113 based on Archytas's Enharmonic |
ARCH_ENHT3.SCL | 7 | Complex 1 of p. 113 based on Archytas's Enharmonic |
ARCH_ENHT4.SCL | 7 | Complex 8 of p. 113 based on Archytas's Enharmonic |
ARCH_ENHT5.SCL | 7 | Complex 10 of p. 113 based on Archytas's Enharmonic |
ARCH_ENHT6.SCL | 7 | Complex 2 of p. 113 based on Archytas's Enharmonic |
ARCH_ENHT7.SCL | 7 | Complex 11 of p. 113 based on Archytas's Enharmonic |
ARCH_MULT.SCL | 12 | Multiple Archytas |
ARCH_PTOL.SCL | 12 | Archytas/Ptolemy Hybrid 1 |
ARCH_PTOL2.SCL | 12 | Archytas/Ptolemy Hybrid 2 |
ARCH_SEPT.SCL | 12 | Archytas Septimal |
ARIEL1.SCL | 12 | Ariel 1 |
ARIEL2.SCL | 12 | Ariel 2 |
ARIEL3.SCL | 12 | Ariel's 12-tone JI scale |
ARIEL_19.SCL | 19 | Ariel 19-tone scale |
ARIEL_31.SCL | 31 | Ariel's 31-tone system |
ARIST_ARCHENH.SCL | 7 | PsAristo Arch. Enharmonic, 4 + 3 + 23 parts, similar to Archytas' enharmonic |
ARIST_CHROM.SCL | 7 | Dorian, Neo-Chromatic,6+18+6 parts = Athanasopoulos' Byzant.liturg. 2nd chrom. |
ARIST_CHROM2.SCL | 7 | Dorian Mode, a 1:2 Chromatic, 8 + 18 + 4 parts |
ARIST_CHROM3.SCL | 7 | PsAristo 3 Chromatic, 7 + 7 + 16 parts |
ARIST_CHROM4.SCL | 7 | PsAristo Chromatic, 5.5 + 5.5 + 19 parts |
ARIST_CHROMENH.SCL | 7 | Aristoxenos' Chromatic/Enharmonic, 3 + 9 + 18 parts |
ARIST_CHROMINV.SCL | 7 | Aristoxenos' Inverted Chromatic, Dorian mode, 18 + 6 + 6 parts |
ARIST_CHROMREJ.SCL | 7 | Aristoxenos Rejected Chromatic, 6 + 3 + 21 parts |
ARIST_CHROMUNM.SCL | 7 | Unmelodic Chromatic, genus of Aristoxenos, Dorian Mode, 4.5 + 3.5 + 22 parts |
ARIST_DIAT.SCL | 7 | Phrygian octave species on E, 12 + 6 + 12 parts |
ARIST_DIAT2.SCL | 7 | PsAristo 2 Diatonic, 7 + 11 + 12 parts |
ARIST_DIAT3.SCL | 7 | PsAristo Diat 3, 9.5 + 9.5 + 11 parts |
ARIST_DIAT4.SCL | 7 | PsAristo Diatonic, 8 + 8 + 14 parts |
ARIST_DIATDOR.SCL | 7 | PsAristo Redup. Diatonic, 14 + 2 + 14 parts |
ARIST_DIATINV.SCL | 7 | Lydian octave species on E, Major Mode, 12 + 12 + 6 parts |
ARIST_DIATRED.SCL | 7 | Aristo Redup. Diatonic, Dorian Mode, 14 + 14 + 2 parts |
ARIST_DIATRED2.SCL | 7 | PsAristo 2 Redup. Diatonic 2, 4 + 13 + 13 parts |
ARIST_DIATRED3.SCL | 7 | PsAristo 3 Redup. Diatonic, 8 + 11 + 11 parts |
ARIST_ENH.SCL | 7 | Aristoxenos' Enharmonion, Dorian mode |
ARIST_ENH2.SCL | 7 | PsAristo 2 Enharmonic, 3.5 + 3.5 + 23 parts |
ARIST_ENH3.SCL | 7 | PsAristo Enharmonic, 2.5 + 2.5 + 25 parts |
ARIST_HEMCHROM.SCL | 7 | Aristoxenos's Chromatic Hemiolion, Dorian Mode |
ARIST_HEMCHROM2.SCL | 7 | PsAristo C/H Chromatic, 4.5 + 7.5 + 18 parts |
ARIST_HEMCHROM3.SCL | 7 | Dorian mode of Aristoxenos' Hemiolic Chromatic according to Ptolemy's interpret |
ARIST_HYPENH2.SCL | 7 | PsAristo 2nd Hyperenharmonic, 37.5 + 37.5 + 425 cents |
ARIST_HYPENH3.SCL | 7 | PsAristo 3 Hyperenharmonic, 1.5 + 1.5 + 27 parts |
ARIST_HYPENH4.SCL | 7 | PsAristo 4 Hyperenharmonic, 2 + 2 + 26 parts |
ARIST_HYPENH5.SCL | 7 | PsAristo Hyperenharmonic, 23 + 23 + 454 cents |
ARIST_INTDIAT.SCL | 7 | Dorian mode of Aristoxenos's Intense Diatonic according to Ptolemy |
ARIST_PENH2.SCL | 7 | Permuted Aristoxenos's Enharmonion, 3 + 24 + 3 parts |
ARIST_PENH3.SCL | 7 | Permuted Aristoxenos's Enharmonion, 24 + 3 + 3 parts |
ARIST_PSCHROM2.SCL | 7 | PsAristo 2 Chromatic, 6.5 + 6.5 + 17 parts |
ARIST_SOFTCHROM.SCL | 7 | Aristoxenos's Chromatic Malakon, Dorian Mode |
ARIST_SOFTCHROM2.SCL | 7 | Aristoxenos' Soft Chromatic, 6 + 16.5 + 9.5 parts |
ARIST_SOFTCHROM3.SCL | 7 | Aristoxenos's Chromatic Malakon, 9.5 + 16.5 + 6 parts |
ARIST_SOFTCHROM4.SCL | 7 | PsAristo S. Chromatic, 6 + 7.5 + 16.5 parts |
ARIST_SOFTCHROM5.SCL | 7 | Dorian mode of Aristoxenos' Soft Chromatic according to Ptolemy's interpretati |
ARIST_SOFTDIAT.SCL | 7 | Aristoxenos's Diatonon Malakon, Dorian Mode |
ARIST_SOFTDIAT2.SCL | 7 | Dorian Mode, 6 + 15 + 9 parts |
ARIST_SOFTDIAT3.SCL | 7 | Dorian Mode, 9 + 15 + 6 parts |
ARIST_SOFTDIAT4.SCL | 7 | Dorian Mode, 9 + 6 + 15 parts |
ARIST_SOFTDIAT5.SCL | 7 | Dorian Mode, 15 + 6 + 9 parts |
ARIST_SOFTDIAT6.SCL | 7 | Dorian Mode, 15 + 9 + 6 parts |
ARIST_SOFTDIAT7.SCL | 7 | Dorian mode of Aristoxenos's Soft Diatonic according to Ptolemy |
ARIST_SYNCHROM.SCL | 7 | Aristoxenos's Chromatic Syntonon, Dorian Mode |
ARIST_SYNDIAT.SCL | 7 | Aristoxenos's Diatonon Syntonon, Dorian Mode |
ARIST_UNCHROM.SCL | 7 | Aristoxenos's Unnamed Chromatic, Dorian Mode, 4 + 8 + 18 parts |
ARIST_UNCHROM2.SCL | 7 | Dorian Mode, a 1:2 Chromatic, 8 + 4 + 18 parts |
ARIST_UNCHROM3.SCL | 7 | Dorian Mode, a 1:2 Chromatic, 18 + 4 + 8 parts |
ARIST_UNCHROM4.SCL | 7 | Dorian Mode, a 1:2 Chromatic, 18 + 8 + 4 parts |
ARITH13.SCL | 12 | The first 13 terms of the arithmetic series, octave reduced |
ARITH22.SCL | 19 | The first 22 terms of the arithmetic series, octave reduced |
ARTUSI.SCL | 12 | Lute tuning of Giovanni Maria Artusi (1603). 1/4-comma w. acc. 1/2-way naturals |
ART_NAM.SCL | 9 | Artificial Nam System |
ATHAN_CHROM.SCL | 7 | Athanasopoulos's Byzantine Liturgical mode Chromatic |
AUFTETF.SCL | 8 | 5/4 C.I. again |
AUGTETA.SCL | 8 | Linear Division of the 11/8, duplicated on the 16/11 |
AUGTETA2.SCL | 8 | Linear Division of the 7/5, duplicated on the 10/7 |
AUGTETB.SCL | 8 | Harmonic mean division of 11/8 |
AUGTETC.SCL | 8 | 11/10 C.I. |
AUGTETD.SCL | 8 | 11/9 C.I. |
AUGTETE.SCL | 8 | 5/4 C.I. |
AUGTETG.SCL | 8 | 9/8 C.I. |
AUGTETH.SCL | 8 | 9/8 C.I. A gapped version of this scale is called AugTetI |
AUGTETJ.SCL | 6 | 9/8 C.I. comprised of 11:10:9:8 subharmonic series on 1 and 8:9:10:11 on 16/11 |
AUGTETK.SCL | 6 | 9/8 C.I. This is the converse form of AugTetJ |
AUGTETL.SCL | 6 | 9/8 C.I. This is the harmonic form of AugTetI |
AVG_BAC.SCL | 7 | Average Bac System |
AVICENNA.SCL | 7 | Soft diatonic of Avicenna (Ibn Sina) |
AVICENNA_19.SCL | 19 | Arabic scale by Ibn Sina |
AVICENNA_CHROM.SCL | 7 | Dorian mode a chromatic genus of Avicenna |
AVICENNA_CHROM2.SCL | 7 | Dorian Mode, a 1:2 Chromatic, 4 + 18 + 8 parts |
AVICENNA_CHROM3.SCL | 7 | Avicenna's Chromatic permuted |
AVICENNA_DIAT.SCL | 7 | Dorian mode a soft diatonic genus of Avicenna |
AVICENNA_DIFF.SCL | 12 | Difference tones of Avicenna's Soft diatonic reduced by 2/1 |
AVICENNA_ENH.SCL | 7 | Dorian mode of Avicenna's (Ibn Sina) Enharmonic genus |
AWAD.SCL | 24 | d'Erlanger vol.5, p.37, after Mans.ur 'Awad |
AWRAAMOFF.SCL | 12 | Awraamoff Septimal Just |
AYERS.SCL | 36 | Lydia Ayers, algorithmic composition. |
AYERS_19.SCL | 19 | Scale for NINETEEN, for 19 for the 90's CD. Repeats at 37/19 (or 2/1) |
AYERS_AP.SCL | 5 | Lydia Ayers' Appetizer, ICMC 96, Balinese Slendro from Singaraja, |
AYERS_ME.SCL | 9 | Scale for Merapi (1996), Lydia Ayers. Slendro 0 2 4 5 7 9, Pelog 0 1 3 6 8 9 |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
BADUMA.SCL | 7 | African Baduma Sanza (idiophone, set of lamellas, thumb-plucked) |
BAGPIPE.SCL | 12 | Bagpipe Tuning |
BAGPIPE2.SCL | 7 | Highland Bagpipe, from Acustica4: 231 (1954) J.M.A Lenihan and S. McNeill |
BALAFON.SCL | 7 | Observed balafon tuning from Patna |
BAMBOO.SCL | 23 | Pythagorean scale with fifth average from Chinese bamboo tubes |
BANYORO.SCL | 5 | African Banyoro Xylophone (idiophone; loose log) |
BAPARE.SCL | 10 | African Bapare Xylophone, idiophone, loose-log |
BAPERE.SCL | 5 | African, Bapere Horns Aerophone, made of reed, one note each |
BARBOUR_CHROM1.SCL | 7 | Barbour's #1 Chromatic |
BARBOUR_CHROM2.SCL | 7 | Barbour's #2 Chromatic |
BARBOUR_CHROM3.SCL | 7 | Barbour's #3 Chromatic |
BARBOUR_CHROM3P.SCL | 7 | permuted Barbour's #3 Chromatic |
BARBOUR_CHROM3P2.SCL | 7 | permuted Barbour's #3 Chromatic |
BARBOUR_CHROM4.SCL | 7 | Barbour's #4 Chromatic |
BARBOUR_CHROM4P.SCL | 7 | permuted Barbour's #4 Chromatic |
BARBOUR_CHROM4P2.SCL | 7 | permuted Barbour's #4 Chromatic |
BARKECHLI.SCL | 27 | Mehdi Barkechli, 27-tone pyth. Arabic scale |
BARNES.SCL | 12 | John Barnes' temperament (1979) |
BARNES_BACH.SCL | 12 | Barnes-Bach, variation of Young, likely meant for Das Wohltemperierte Klavier |
BARSTOW.SCL | 18 | Guitar scale for Partch's Barstow |
BARTOK_AX.SCL | 12 | Bartok's axial system, 4 times S-T-D on major triad 4:5:6 |
BEARDSLEY.SCL | 12 | David Beardsley's scale used in "Science Friction". superparticular |
BECKET.SCL | 12 | Quasi-equal temperament by the Becket and Co. plan (1840) |
BELET.SCL | 13 | Belet, Brian 1992 Proceedings of the ICMC pp.158-161. |
BEMETZRIEDER2.SCL | 12 | Anton Bemetzrieder temperament 2 (1808), is Vallotti in F#. |
BETHISY.SCL | 12 | Bethisy temperament ordinaire, see Pierre-Yves Asselin: Musique et temperament |
BEY-R.SCL | 24 | Idris Ragib Bey, vol.5 d'Erlanger, p 40. Idris Rag'ib Bey |
BEY_24.SCL | 24 | Yekta Bey, 24-tone pyth. Arabic scale |
BIGGULP.SCL | 12 | Big Gulp |
BIRMA.SCL | 7 | Birmese scale, von Hornbostel |
BLAS.SCL | 23 | Blasquintenzirkel. 23 fifths in 2 oct. C. Sachs, Vergleichende Musikwiss. p. 28 |
BOETH_CHROM.SCL | 7 | Boethius's Chromatic. The CI is 19/16 |
BOETH_ENH.SCL | 8 | Boethius's Enharmonic, with a CI of 81/64 and added 16/9 |
BOHLEN-P.SCL | 13 | Bohlen-Pierce scale. 13-tone equal division of 3/1 |
BOHLEN-P_9.SCL | 9 | Bohlen-Pierce subscale by J.R. Pierce with 3:5:7 triads |
BOHLEN-P_EBT.SCL | 13 | Bohlen-Pierce scale with equal beating 7/3 tenth |
BOHLEN-P_JI.SCL | 13 | See Bohlen, H. 13-Tonstufen in der Duodezime, Acustica 39: 76-86 (1978) |
BOHLEN-P_RAT.SCL | 13 | Bohlen-Pierce scale, rational approximation |
BOHLEN_11.SCL | 11 | 11-tone scale by Bohlen, generated from the 1/1 3/2 5/2 triad |
BOHLEN_12.SCL | 12 | 12-tone scale by Bohlen generated from the 1/1 7/4 5/2 triad |
BOHLEN_8.SCL | 8 | See Bohlen, H. 13-Tonstufen in der Duodezime, Acustica 39: 76-86 (1978) |
BOHLEN_DELTA.SCL | 9 | Bohlen's delta scale, a mode B-P, see Acustica 39: 76-86 (1978) |
BOHLEN_D_JI.SCL | 9 | Bohlen's delta scale, just version. "Dur" form, "moll" is inversion. |
BOHLEN_GAMMA.SCL | 9 | Bohlen's gamma scale, a mode of the Bohlen-Pierce scale |
BOHLEN_G_JI.SCL | 9 | Bohlen's gamma scale, just version |
BOHLEN_HARM.SCL | 9 | Bohlen's harmonic scale, inverse of lambda |
BOHLEN_H_JI.SCL | 9 | Bohlen's harmonic scale, just version |
BOHLEN_LAMBDA.SCL | 9 | Bohlen's lambda scale, a mode of the Bohlen-Pierce scale |
BOHLEN_L_JI.SCL | 9 | Bohlen's lambda scale, just version |
BOHLEN_T.SCL | 8 | Bohlen, scale based on the twelfth |
BOHLEN_T_JI.SCL | 8 | Bohlen, scale based on twelfth, just version |
BOLIVIA.SCL | 7 | Observed scale from pan-pipe from La Paz. 1/1=171 Hz. |
BOOMSLITER.SCL | 12 | Boomsliter & Creel basic set of their referential tuning. |
BOULLIAU.SCL | 12 | Monsieur Boulliau's irregular temp. (1373), reported by Mersenne in 1636. |
BREED.SCL | 12 | Graham Breed's fourth based 12-tone keyboard scale. Tuning List 23-10-97 |
BROWN.SCL | 45 | Tuning of Colin Brown's Voice Harmonium, Glasgow. Helmholtz/Ellis p. 470-473 |
BULGARIAN.SCL | 12 | Bulgarian bagpipe tuning |
BURMA.SCL | 7 | Observed patala tuning from Burma |
BURMA2.SCL | 7 | Observed balafon tuning from Burma |
BURT-FORKS.SCL | 19 | Warren Burt 19-tone Forks. Interval 5(3): pp. 13+23 Winter 1986-87 |
BURT1.SCL | 12 | W. Burt's 13diatsub #1 |
BURT10.SCL | 12 | W. Burt's 19enhsub #10 |
BURT11.SCL | 12 | W. Burt's 19enhharm #11 |
BURT12.SCL | 12 | W. Burt's 19diatharm #12 |
BURT13.SCL | 12 | W. Burt's 23diatsub #13 |
BURT14.SCL | 12 | W. Burt's 23enhsub #14 |
BURT15.SCL | 12 | W. Burt's 23enhharm #15 |
BURT16.SCL | 12 | W. Burt's 23diatharm #16 |
BURT2.SCL | 12 | W. Burt's 13enhsub #2 |
BURT3.SCL | 12 | W. Burt's 13enhharm #3 |
BURT4.SCL | 12 | W. Burt's 13diatharm #4, see his post 3/30/94 in Tuning Digest #57 |
BURT5.SCL | 12 | W. Burt's 17diatsub #5 |
BURT6.SCL | 12 | W. Burt's 17enhsub #6 |
BURT7.SCL | 12 | W. Burt's 17enhharm #7 |
BURT8.SCL | 12 | W. Burt's 17diatharm #8 |
BURT9.SCL | 12 | W. Burt's 19diatsub #9 |
BYZ_PALACE.SCL | 7 | Byzantine Palace mode, 17-limit |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
CAIRO.SCL | 26 | P.42, of d'Erlanger, vol.5. Congress of Arabic Music, Cairo, 1932 |
CANRIGHT.SCL | 12 | David Canright's piano tuning for "Canon for Seven Hands" |
CARLOS_ALPHA.SCL | 18 | Wendy Carlos' Alpha scale with perfect fifth divided in nine |
CARLOS_ALPHA2.SCL | 36 | Wendy Carlos' Alpha prime scale with perfect fifth divided by eightteen |
CARLOS_BETA.SCL | 22 | Wendy Carlos' Beta scale with perfect fifth divided by eleven |
CARLOS_BETA2.SCL | 44 | Wendy Carlos' Beta prime scale with perfect fifth divided by twentytwo |
CARLOS_GAMMA.SCL | 35 | Wendy Carlos' Gamma scale with third divided by eleven or fifth by twenty |
CARLOS_HARM.SCL | 12 | Carlos Harmonic, also Dan Schmidt Slendro-Pelog with 13,17,19,21,27 |
CARLOS_SUPER.SCL | 12 | Carlos Super Just |
CARLSON.SCL | 19 | Brian Carlson's guitar scale (or 7 is 21/16 instead) fretted by Mark Rankin |
CATLER.SCL | 24 | Catler 24-tone JI from "Over and Under the 13 Limit", 1/1 3(3) |
CEB88F.SCL | 13 | 88 cents steps with equal beating fifths |
CEB88S.SCL | 14 | 88 cents steps with equal beating sevenths |
CEB88T.SCL | 14 | 88 cents steps with equal beating 7/6 thirds |
CET105.SCL | 13 | Equal temperament with very good 6/5 and 13/8 |
CET133.SCL | 13 | 13th root of e |
CET140.SCL | 24 | 24th root of 7 |
CET148.SCL | 21 | 21th root of 6, Moreno's C-21 |
CET152.SCL | 13 | 13th root of pi |
CET158.SCL | 12 | 12th root of 3, Moreno's A-12, see dissertation "Embedding Equal Pitch Spaces.. |
CET159.SCL | 8 | 4e-th root of e. e-th root of e is highest x-th root of x |
CET166.SCL | 3 | 3rd root of 4/3 |
CET173.SCL | 11 | 11th root of 3, Moreno's A-11 |
CET181.SCL | 16 | 6.625 tET. The 16/3 is the so-called Kidjel Ratio promoted by Kidjel in 60's |
CET182.SCL | 17 | 17th root of 6, Moreno's C-17 |
CET195.SCL | 7 | 7th root of 11/5 |
CET222.SCL | 14 | 14th root of 6, Moreno's C-14 |
CET258.SCL | 12 | 12th root of 6, Moreno's C-12 |
CET29.SCL | 95 | 95th root of 5 |
CET39.SCL | 49 | 49th root of 3 |
CET39A.SCL | 31 | 31-tET with least squares octave; equal weight to 5/4, 3/2, 7/4 and 2/1 |
CET39B.SCL | 31 | 31-tET with l.s. 8/7, 5/4, 4/3, 3/2, 8/5, 7/4, 2/1; equal weights |
CET39C.SCL | 31 | 10th root of 5/4 |
CET45.SCL | 11 | 11th root of 4/3 |
CET54.SCL | 62 | 62nd root of 7 |
CET54A.SCL | 101 | 101st root of 24 |
CET54B.SCL | 35 | 35th root of 3 or shrunk 22-tET |
CET55.SCL | 51 | 51th root of 5 |
CET63.SCL | 30 | 30th root of 3 or stretched 19-tET |
CET63A.SCL | 44 | 44th root of 5 |
CET79.SCL | 24 | 24th root of 3, James Hefferman (1906). |
CET80.SCL | 35 | 35th root of 5 |
CET88.SCL | 14 | 88 cents steps by Gary Morrison |
CET88B.SCL | 14 | 87.9745 cents steps. Least squares of 7/6, 11/9, 10/7, 3/2, 7/4. |
CET88_APPR.SCL | 22 | 88 cents scale approximated |
CET90.SCL | 17 | Scale with limma steps |
CET93.SCL | 9 | Tuning used in John Chowning's STRIA, 9th root of Phi |
CET99.SCL | 12 | Scale with 18/17 steps |
CHALMERS.SCL | 19 | Chalmers' 19-tone with more hexanies than Perrett's Tierce-Tone |
CHALMERS_17.SCL | 17 | 7-limit figurative scale, Chalmers '96 Adnexed S&H decads |
CHALMERS_19.SCL | 19 | 7-limit figurative scale. Reversed S&H decads |
CHALMERS_CSURD.SCL | 15 | Combined Surd Scale, combination of Surd and Inverted Surd, JHC, 26-6-97 |
CHALMERS_ISURD.SCL | 8 | Inverted Surd Scale, of the form 4/(SQRT(N)+1, JHC, 26-6-97 |
CHALMERS_JI1.SCL | 12 | Based loosely on Wronski's and similar JI scales, May 2, 1997. |
CHALMERS_JI2.SCL | 12 | Based loosely on Wronski's and similar JI scales, May 2, 1997. |
CHALMERS_JI3.SCL | 12 | 15 16 17 18 19 20 21 on 1/1, 15-20 on 3/2, May 2, 1997. See other scales |
CHALMERS_JI4.SCL | 12 | 15 16 17 18 19 20 on 1/1, same on 4/3, + 16/15 on 16/9 |
CHALMERS_SPON1.SCL | 9 | JC Spondeion, from discussions with George Kahrimanis about tritone of spondeion |
CHALMERS_SPON2.SCL | 9 | JC Spondeion II, 10 May 1997. Various tunings for the parhypatai and hence trito |
CHALMERS_SURD.SCL | 8 | Surd Scale, Surds of the form (SQRT(N)+1)/2, JHC, 26-6-97 |
CHALMERS_SURD2.SCL | 40 | Surd Scale, Surds of the form (SQRT(N)+1)/4 |
CHALUNG.SCL | 11 | Tuning of chalung from Tasikmalaya. "slendroid". 1/1=185 Hz |
CHIMES.SCL | 3 | Heavenly Chimes |
CHIN_5.SCL | 5 | Chinese pentatonic from Zhou period |
CHIN_60.SCL | 60 | Chinese scale of fifths (the 60 lu") |
CHIN_7.SCL | 7 | Chinese heptatonic scale and tritriadic of 64:81:96 triad |
CHIN_BIANZHONG.SCL | 12 | Pitches of Bianzhong bells (Xinyang). 1/1=b, Liang Mingyue, 1975. |
CHIN_BRONZE.SCL | 7 | Scale found on ancient Chinese bronze instrument 3rd c.BC & "Scholar's Lute" |
CHIN_LU.SCL | 12 | Chinese Lu" scale by Huai-nan-dsi", Han era. Kurt Reinhard: Chinesische Musik |
CHIN_LU2.SCL | 12 | Chinese Lu" (Lushi chunqiu, by Lu Buwei). Mingyue: Music of the billion, p.67 |
CHIN_LUSHENG.SCL | 5 | Observed tuning of a small Lusheng, 1/1=d, OdC '97 |
CHIN_PIPA.SCL | 5 | Observed tuning from Chinese balloon guitar (p'i-p'a), Ellis |
CHIN_SHENG.SCL | 7 | Observed tuning from Chinese sheng or mouth organ |
CHIN_SIEN-TSU.SCL | 5 | Observed tuning from Chinese tamboura (sien-tsu), Ellis |
CHIN_SO-NA.SCL | 7 | Observed tuning from Chinese oboe (so-na), Ellis |
CHIN_TI-TSU.SCL | 7 | Observed tuning from Chinese flute (ti-tsu), Ellis |
CHIN_WANG-PO.SCL | 7 | Scale of Wang Po, 958 AD. H. Pischner: Musik in China, Berlin, 1955, p.20 |
CHIN_YANG-CHIN.SCL | 7 | Observed tuning from Chinese dulcimer (yang-chin), Ellis |
CHIN_YUN-LO.SCL | 7 | Observed tuning from Chinese gong-chime (yu"n-lo), Ellis |
CHOQUEL.SCL | 12 | Choquel/Barbour/Marpurg? |
CHORDAL.SCL | 40 | Chordal Notes S&H |
CHROM15.SCL | 7 | Tonos-15 Chromatic |
CHROM15_INV.SCL | 7 | Inverted Chromatic Tonos-15 Harmonia |
CHROM15_INV2.SCL | 7 | A harmonic form of the Chromatic Tonos-15 inverted |
CHROM17.SCL | 7 | Tonos-17 Chromatic |
CHROM17_CON.SCL | 7 | Conjunct Tonos-17 Chromatic |
CHROM19.SCL | 7 | Tonos-19 Chromatic |
CHROM19_CON.SCL | 7 | Conjunct Tonos-19 Chromatic |
CHROM21.SCL | 7 | Tonos-21 Chromatic |
CHROM21_INV.SCL | 7 | Inverted Chromatic Tonos-21 Harmonia |
CHROM21_INV2.SCL | 7 | Inverted harmonic form of the Chromatic Tonos-21 |
CHROM23.SCL | 7 | Tonos-23 Chromatic |
CHROM23_CON.SCL | 7 | Conjunct Tonos-23 Chromatic |
CHROM25.SCL | 7 | Tonos-25 Chromatic |
CHROM25_CON.SCL | 7 | Conjunct Tonos-25 Chromatic |
CHROM27.SCL | 7 | Tonos-27 Chromatic |
CHROM27_INV.SCL | 7 | Inverted Chromatic Tonos-27 Harmonia |
CHROM27_INV2.SCL | 7 | Inverted harmonic form of the Chromatic Tonos-27 |
CHROM29.SCL | 7 | Tonos-29 Chromatic |
CHROM29_CON.SCL | 7 | Conjunct Tonos-29 Chromatic |
CHROM31.SCL | 8 | Tonos-31 Chromatic. Tone 24 alternates with 23 as MESE or A |
CHROM31_CON.SCL | 8 | Conjunct Tonos-31 Chromatic |
CHROM33.SCL | 7 | Tonos-33 Chromatic. A variant is 66 63 60 48 |
CHROM33_CON.SCL | 7 | Conjunct Tonos-33 Chromatic |
CHROM_NEW.SCL | 7 | New Chromatic genus 4.5 + 9 + 16.5 |
CHROM_NEW2.SCL | 7 | New Chromatic genus 14/3 + 28/3 + 16 parts |
CHROM_SOFT.SCL | 7 | 100/81 Chromatic. This genus is a good approximation to the soft chromatic |
CHROM_SOFT2.SCL | 7 | 1:2 Soft Chromatic |
CHROM_SOFT3.SCL | 7 | Soft chromatic genus is from K. Schlesinger's modified Mixolydian Harmonia |
CIFARIELLO.SCL | 15 | F. Cifariello Ciardi, ICMC 86 Proc. 15-tone 5-limit tuning |
CKRING1.SCL | 13 | Double-tie circular mirroring with common pivot of 4:5:6:7 = square 1 3 5 7 |
CKRING2.SCL | 13 | Double-tie circular mirroring with common pivot of 3:5:7:9 |
CLUSTER.SCL | 13 | 13-tone 5-limit Tritriadic Cluster |
CLUSTER6A.SCL | 6 | Six-Tone Triadic Cluster 4:5:6 |
CLUSTER6B.SCL | 6 | Six-Tone Triadic Cluster 4:6:5 |
CLUSTER6C.SCL | 6 | Six-Tone Triadic Cluster 3:4:5 |
CLUSTER6D.SCL | 6 | Six-Tone Triadic Cluster 3:5:4 |
CLUSTER6E.SCL | 6 | Six-Tone Triadic Cluster 5:6:8 |
CLUSTER6F.SCL | 6 | Six-Tone Triadic Cluster 5:8:6 |
CLUSTER6G.SCL | 6 | Six-Tone Triadic Cluster 4:5:7 |
CLUSTER6H.SCL | 6 | Six-Tone Triadic Cluster 4:7:5 |
CLUSTER6I.SCL | 6 | Six-Tone Triadic Cluster 5:6:7 |
CLUSTER6J.SCL | 6 | Six-Tone Triadic Cluster 5:7:6 |
CLUSTER8A.SCL | 8 | Eight-Tone Triadic Cluster 4:5:6 |
CLUSTER8B.SCL | 8 | Eight-Tone Triadic Cluster 4:6:5 |
CLUSTER8C.SCL | 8 | Eight-Tone Triadic Cluster 3:4:5 |
CLUSTER8D.SCL | 8 | Eight-Tone Triadic Cluster 3:5:4 |
CLUSTER8E.SCL | 8 | Eight-Tone Triadic Cluster 5:6:8 |
CLUSTER8F.SCL | 8 | Eight-Tone Triadic Cluster 5:8:6 |
CLUSTER8G.SCL | 8 | Eight-Tone Triadic Cluster 4:5:7 |
CLUSTER8H.SCL | 8 | Eight-Tone Triadic Cluster 4:7:5 |
CLUSTER8I.SCL | 8 | Eight-Tone Triadic Cluster 5:6:7 |
CLUSTER8J.SCL | 8 | Eight-Tone Triadic Cluster 5:7:6 |
COLLENGETTES.SCL | 24 | R.P. Collengettes, from p.23 of d'Erlanger, vol 5. 24 tone Arabic system |
COLONNA1.SCL | 12 | Colonna 1 |
COLONNA2.SCL | 12 | Colonna 2 |
CONCERTINA.SCL | 14 | English Concertina, see Helmholtz, p 470. from Ellis |
CONT_FRAC1.SCL | 14 | Continued fraction scale 1, see McLaren in Xenharmonikon 15, pp.33-38 |
CONT_FRAC2.SCL | 15 | Continued fraction scale 2, see McLaren in Xenharmonikon 15, pp.33-38 |
CORDIER.SCL | 12 | Serge Cordier, piano tuning, 1975 (Accord bien tempere et justesse orchestrale |
CORNER11.SCL | 15 | Quadratic Corner 11-limit. Chalmers '96 |
CORNER13.SCL | 21 | Quadratic Corner 13-limit. Chalmers '96 |
CORNER17.SCL | 28 | Quadratic Corner 17-limit. |
CORNER17A.SCL | 42 | Quadratic Corner 17 odd limit. |
CORNER7.SCL | 10 | Quadratic corner 7-limit. Chalmers '96 |
CORNER9.SCL | 14 | First 9 harmonics of 5th through 9th harmonics |
CORNERS11.SCL | 29 | Quadratic Corners 11-limit. Chalmers '96 |
CORNERS13.SCL | 41 | Quadratic Corners 13-limit. Chalmers '96 |
CORNERS7.SCL | 19 | Quadratic Corners 7-limit. Chalmers '96 |
COUL_12.SCL | 12 | Scale 1 5/4 3/2 2 successively split largest intervals by smallest interval |
COUL_12A.SCL | 12 | Scale 1 6/5 3/2 2 successively split largest intervals by smallest interval |
COUL_13.SCL | 13 | Symmetrical 13-tone 5-limit just system |
COUL_20.SCL | 20 | Tuning for a 3-row symmetrical keyboard, Op de Coul, 1989 |
COUL_31.SCL | 31 | Op de Coul's 31-tone 5-limit just system |
CPS_MCLAREN.SCL | 15 | 2)12 [1,2,3,4,5,6,8,9,10,12,14,15] a degenerate CPS |
CROSS2.SCL | 9 | Pusey's double 5-7 cross reduced by 3/1 |
CROSS2_5.SCL | 9 | double 3-5 cross reduced by 2/1 |
CROSS2_7.SCL | 13 | longer 3-5-7 cross reduced by 2/1 |
CROSS3.SCL | 13 | Pusey's triple 5-7 cross reduced by 3/1 |
CROSS_7.SCL | 7 | 3-5-7 cross reduced by 2/1, quasi diatonic, similar to Zalzal's, Flynn Cohen |
CROSS_72.SCL | 13 | double 3-5-7 cross reduced by 2/1 |
CROSS_7A.SCL | 7 | 2-5-7 cross reduced by 3/1 |
CRUCIFORM.SCL | 12 | Cruciform Lattice |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
DANIELOU5_53.SCL | 53 | Danielou's Harmonic Division in 5-limit, symmetrized |
DANIELOU_53.SCL | 53 | Danielou's Harmonic Division of the Octave, see p. 153 |
DAN_SEMANTIC.SCL | 35 | The Semantic Scale, from Alain Danie'lou: "Se'mantique Musicale", 1967. |
DARREG.SCL | 19 | This set of 19 ratios in 5-limit JI is for his megalyra family |
DARREG_ENNEA.SCL | 9 | Ivor Darreg's Mixed Enneatonic, a mixture of chromatic and enharmonic |
DARREG_GENUS.SCL | 9 | Ivor Darreg's Mixed JI Genus (Archytas Enh, Ptolemy Soft Chrom, Didymos Chrom |
DARREG_GENUS2.SCL | 9 | Darreg's Mixed JI Genus 2 (Archytas Enharmonic and Chromatic Genera) |
DAVID11.SCL | 22 | 11-limit system from Gary David, 1967 |
DAVID7.SCL | 12 | Gary David's Constant Structure, 1967. A mode of Fokker's 7-limit scale |
DEGUNG1.SCL | 5 | Gamelan Degung, Kabupaten Sukabumi. 1/1=363 Hz |
DEGUNG2.SCL | 5 | Gamelan Degung, Kabupaten Bandung. 1/1=252 Hz |
DEGUNG3.SCL | 5 | Gamelan Degung, Kabupaten Sumedang. 1/1=388.5 Hz |
DEGUNG4.SCL | 5 | Gamelan Degung, Kasepuhan Cheribon. 1/1=250 Hz |
DEGUNG5.SCL | 5 | Gamelan Degung, Kanoman Cheribon. 1/1=428 Hz |
DEGUNG6.SCL | 5 | Gamelan Degung, Kacherbonan Cheribon. 1/1=426 Hz |
DEKANY.SCL | 10 | 2)5 Dekany 1.3.5.7.11 (1.3 tonic) |
DEKANY2.SCL | 10 | 3)5 Dekany 1.3.5.7.9 (1.3.5.7.9 tonic) |
DEKANY3.SCL | 10 | 3)5 Dekany 1 1/3 1/5 1/7 1/9 |
DEKANY_UNION.SCL | 14 | Union of 2)5 and 3)5 [ 1 3 5 7 9] dekanies |
DE_CAUS.SCL | 12 | De Caus (a mode of Ellis's duodene) |
DIACYCLE13.SCL | 23 | Diacycle on 20/13, 13/10; there are also nodes at 3/2, 4/3; 13/9, 18/13 |
DIAMOND15.SCL | 59 | 15-limit Diamond + 2nd ratios. See Novaro, 1927, Sistema Natural... |
DIAMOND17.SCL | 43 | 17-limit Diamond |
DIAMOND17A.SCL | 55 | 17-limit, +9 Diamond |
DIAMOND19.SCL | 57 | 19-limit Diamond |
DIAMOND9.SCL | 19 | 9-limit Diamond |
DIAMOND_CHESS.SCL | 11 | 9-limit chessboard pattern diamond. OdC |
DIAMOND_CHESS11.SCL | 17 | 11-limit chessboard pattern diamond. OdC |
DIAMOND_MOD.SCL | 13 | 13-tone Octave Modular Diamond, based on Archytas's Enharmonic |
DIAMOND_TETR.SCL | 8 | Tetrachord Modular Diamond based on Archytas's Enharmonic |
DIAPHONIC_10.SCL | 10 | 10-tone Diaphonic Cycle |
DIAPHONIC_12.SCL | 12 | 12-tone Diaphonic Cycle, conjunctive form on 3/2 and 4/3 |
DIAPHONIC_12A.SCL | 12 | 2nd 12-tone Diaphonic Cycle, conjunctive form on 10/7 and 7/5 |
DIAPHONIC_5.SCL | 5 | D5-tone Diaphonic Cycle |
DIAPHONIC_7.SCL | 7 | 7-tone Diaphonic Cycle, disjunctive form on 4/3 and 3/2 |
DIAT13.SCL | 7 | This genus is from K.S's diatonic Hypodorian harmonia |
DIAT15.SCL | 8 | Tonos-15 Diatonic and its own trite synemmenon Bb |
DIAT15_INV.SCL | 8 | Inverted Tonos-15 Harmonia, a harmonic series from 15 from 30. |
DIAT17.SCL | 8 | Tonos-17 Diatonic and its own trite synemmenon Bb |
DIAT19.SCL | 8 | Tonos-19 Diatonic and its own trite synemmenon Bb |
DIAT21.SCL | 8 | Tonos-21 Diatonic and its own trite synemmenon Bb |
DIAT21_INV.SCL | 8 | Inverted Tonos-21 Harmonia, a harmonic series from 21 from 42. |
DIAT23.SCL | 8 | Tonos-23 Diatonic and its own trite synemmenon Bb |
DIAT25.SCL | 8 | Tonos-25 Diatonic and its own trite synemmenon Bb |
DIAT27.SCL | 8 | Tonos-27 Diatonic and its own trite synemmenon Bb |
DIAT27_INV.SCL | 8 | Inverted Tonos-27 Harmonia, a harmonic series from 27 from 54 |
DIAT29.SCL | 8 | Tonos-29 Diatonic and its own trite synemmenon Bb |
DIAT31.SCL | 8 | Tonos-31 Diatonic. The disjunctive and conjunctive diatonic forms are the same |
DIAT33.SCL | 8 | Tonos-33 Diatonic. The conjunctive form is 23 (Bb instead of B) 20 18 33/2 |
DIATRED11.SCL | 7 | Dorian mode of a diatonic genus with reduplicated 11/10 |
DIAT_CHROM.SCL | 7 | Diatonic- Chromatic, on the border between the chromatic and diatonic genera |
DIAT_DIES2.SCL | 7 | Dorian Diatonic, 2 part Diesis |
DIAT_DIES5.SCL | 7 | Dorian Diatonic, 5 part Diesis |
DIAT_ENH.SCL | 7 | Diat. + Enharm. Diesis, Dorian Mode |
DIAT_ENH2.SCL | 7 | Diat. + Enharm. Diesis, Dorian Mode 3 + 12 + 15 parts |
DIAT_ENH3.SCL | 7 | Diat. + Enharm. Diesis, Dorian Mode, 15 + 3 + 12 parts |
DIAT_ENH4.SCL | 7 | Diat. + Enharm. Diesis, Dorian Mode, 15 + 12 + 3 parts |
DIAT_ENH5.SCL | 7 | Dorian Mode, 12 + 15 + 3 parts |
DIAT_ENH6.SCL | 7 | Dorian Mode, 12 + 3 + 15 parts |
DIAT_EQ.SCL | 7 | Equal Diatonic, Islamic form, similar to 11/10 x 11/10 x 400/363 |
DIAT_EQ2.SCL | 7 | Equal Diatonic, 11/10 x 400/363 x 11/10 |
DIAT_GOLD.SCL | 7 | Diatonic scale with ratio between whole and half tone the Golden Section |
DIAT_HEMCHROM.SCL | 7 | Diat. + Hem. Chrom. Diesis, Another genus of Aristoxenos, Dorian Mode |
DIAT_SMAL.SCL | 7 | "Smallest number" diatonic scale |
DIAT_SOFCHROM.SCL | 7 | Diat. + Soft Chrom. Diesis, Another genus of Aristoxenos, Dorian Mode |
DIAT_SOFT.SCL | 7 | Soft Diatonic genus 5 + 10 + 15 parts |
DIAT_SOFT2.SCL | 7 | Soft Diatonic genus with equally divided Pyknon; Dorian Mode |
DIDY_CHROM.SCL | 7 | Didymus Chromatic |
DIDY_CHROM1.SCL | 7 | permuted Didymus Chromatic |
DIDY_CHROM2.SCL | 7 | Didymos's Chromatic, 6/5 x 25/24 x 16/15 |
DIDY_CHROM3.SCL | 7 | Didymos's Chromatic, 25/24 x 16/15 x 6/5 |
DIDY_DIAT.SCL | 7 | Didymus Diatonic |
DIDY_EN2.SCL | 7 | permuted Didymus Enharmonic |
DIDY_ENH.SCL | 7 | Dorian mode of Didymos's Enharmonic |
DIMTETA.SCL | 7 | A heptatonic form on the 9/7 |
DIMTETB.SCL | 5 | A pentatonic form on the 9/7 |
DIV_FIFTH1.SCL | 5 | Divided Fifth #1, From Schlesinger, see Chapter 8, p. 160 |
DIV_FIFTH2.SCL | 5 | Divided Fifth #2, From Schlesinger, see Chapter 8, p. 160 |
DIV_FIFTH3.SCL | 5 | Divided Fifth #3, From Schlesinger, see Chapter 8, p. 160 |
DIV_FIFTH4.SCL | 5 | Divided Fifth #4, From Schlesinger, see Chapter 8, p. 160 |
DIV_FIFTH5.SCL | 5 | Divided Fifth #5, From Schlesinger, see Chapter 8, p. 160 |
DKRING1.SCL | 12 | Double-tie circular mirroring of 4:5:6:7 |
DKRING2.SCL | 12 | Double-tie circular mirroring of 3:5:7:9 |
DODECENY.SCL | 12 | Degenerate eikosany 3)6 from 1.3.5.9.15.45 tonic 1.3.15 |
DORIAN_CHROM.SCL | 24 | Dorian Chromatic Tonos |
DORIAN_CHROM2.SCL | 7 | Schlesinger's Dorian Harmonia in the chromatic genus |
DORIAN_CHROMINV.SCL | 7 | A harmonic form of Schlesinger's Chromatic Dorian inverted |
DORIAN_DIAT.SCL | 24 | Dorian Diatonic Tonos |
DORIAN_DIAT2.SCL | 8 | Schlesinger's Dorian Harmonia, a subharmonic series through 13 from 22 |
DORIAN_DIATCON.SCL | 7 | A Dorian Diatonic with its own trite synemmenon replacing paramese |
DORIAN_ENH.SCL | 24 | Dorian Enharmonic Tonos |
DORIAN_ENH2.SCL | 7 | Schlesinger's Dorian Harmonia in the enharmonic genus |
DORIAN_ENHINV.SCL | 7 | A harmonic form of Schlesinger's Dorian enharmonic inverted |
DORIAN_INV.SCL | 8 | Inverted Schlesinger's Dorian Harmonia, a harmonic series from 11 from 22 |
DORIAN_PENT.SCL | 7 | Schlesinger's Dorian Harmonia in the pentachromatic genus |
DORIAN_PIS.SCL | 15 | Diatonic Perfect Immutable System in the Dorian Tonos, a non-rep. 16 tone gamut |
DORIAN_SCHL.SCL | 12 | Schlesinger's Dorian Piano Tuning (Sub 22) |
DORIAN_TRI1.SCL | 7 | Schlesinger's Dorian Harmonia in the first trichromatic genus |
DORIAN_TRI2.SCL | 7 | Schlesinger's Dorian Harmonia in the second trichromatic genus |
DOWLAND.SCL | 12 | Dowland lute tuning |
DUDON_A.SCL | 7 | Dudon Tetrachord A |
DUDON_B.SCL | 7 | Dudon Tetrachord B |
DUDON_DIAT.SCL | 7 | Dudon Neutral Diatonic |
DUNCAN.SCL | 12 | Dudley Duncan's Superparticular Scale |
DUODENARIUM.SCL | 117 | Ellis's Duodenarium : genus [3^12 5^8] |
DUODENE.SCL | 12 | Ellis's Duodene : genus [33355] |
DUODENE14-18-21.SCL | 12 | 14-18-21 Duodene |
DUODENE3-11_9.SCL | 12 | 3-11/9 Duodene |
DUODENE3-7.SCL | 12 | 3-7 Duodene |
DUODENE6-7-9.SCL | 12 | 6-7-9 Duodene |
DUODENE_MIN.SCL | 12 | Minor Duodene |
DUODENE_ROT.SCL | 12 | Ellis's Duodene rotated : genus [33555] |
DUODENE_SKEW.SCL | 12 | Rotated 6/5x3/2 duodene |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
EFG333333333337.SCL | 24 | Genus [333333333337] |
EFG333333355.SCL | 24 | Genus [333333355] |
EFG33335.SCL | 10 | Genus [33335] |
EFG3333555.SCL | 20 | Genus [3333555] |
EFG33335555.SCL | 25 | Genus bis-ultra-chromaticum [33335555] |
EFG333355577.SCL | 60 | Genus [333355577] |
EFG33337.SCL | 10 | Genus [33337] |
EFG3335.SCL | 8 | Genus diatonicum veterum correctum [3335] |
EFG33355.SCL | 12 | Genus diatonico-chromaticum hodiernum correctum [33355] |
EFG333555.SCL | 16 | Genus diatonico-hyperchromaticum [333555] |
EFG33355555.SCL | 24 | Genus [33355555] |
EFG333555777.SCL | 64 | Genus [333555777] |
EFG333557.SCL | 24 | Genus diatonico-enharmonicum [333557] |
EFG33357.SCL | 16 | Genus [33357] |
EFG3335711.SCL | 32 | Genus [3 3 3 5 7 11], expanded hexany 1 3 5 7 9 11 |
EFG333577.SCL | 24 | Genus [333577] |
EFG3337.SCL | 8 | Genus [3337] |
EFG33377.SCL | 12 | Genus [33377] |
EFG3355.SCL | 9 | Genus chromaticum veterum correctum [3355] |
EFG33555.SCL | 12 | Genus bichromaticum [33555] |
EFG335555577.SCL | 45 | Genus [335555577] |
EFG33557.SCL | 18 | Genus chromatico-enharmonicum [33557] |
EFG335577.SCL | 27 | Genus chromaticum septimis triplex [335577] |
EFG3357.SCL | 12 | Genus enharmonicum vocale [3357] |
EFG33577.SCL | 18 | Genus [33577] |
EFG3377.SCL | 9 | Genus [3377] |
EFG33777.SCL | 12 | Genus [33777] |
EFG33777A.SCL | 10 | Genus [33777] with comma discarded which disappears in 31-tET |
EFG3555.SCL | 8 | Genus enharmonicum veterum correctum [3555] |
EFG35557.SCL | 16 | Genus [35557] |
EFG3557.SCL | 12 | Genus enharmonicum instrumentale [3557] |
EFG35577.SCL | 18 | Genus [35577] |
EFG357.SCL | 8 | 7-limit Octony. See Ch.6 p.118 an Euler Genus Musicum on white keys + Bb |
EFG35711.SCL | 16 | Genus [3 5 7 11] |
EFG3571113.SCL | 32 | Genus [3 5 7 11 13] |
EFG3577.SCL | 12 | Genus [3577] |
EFG35777.SCL | 16 | Genus [35777] |
EFG35777A.SCL | 14 | Genus [35777] with comma discarded which disappears in 31-tET |
EFG3777.SCL | 8 | Genus [3777] |
EFG37777.SCL | 10 | Genus [37777] |
EFG37777A.SCL | 8 | Genus [37777] with comma discarded that disappears in 31-tET |
EFG55557.SCL | 10 | Genus [55557] |
EFG5557.SCL | 8 | Genus [5557] |
EFG55577.SCL | 12 | Genus [55577] |
EFG5577.SCL | 9 | Genus [5577] |
EFG55777.SCL | 12 | Genus [55777] |
EFG577.SCL | 6 | Genus nonum [577] |
EFG5777.SCL | 8 | Genus [5777] |
EFG57777.SCL | 10 | Genus [57777] |
EFG77777.SCL | 6 | Genus [77777] |
EIKOSANY.SCL | 20 | 3)6 1.3.5.7.9.11 Eikosany (1.3.5 tonic) |
EKRING1.SCL | 12 | Single-tie circular mirroring of 3:4:5 |
EKRING2.SCL | 12 | Single-tie circular mirroring of 6:7:8 |
EKRING3.SCL | 12 | Single-tie circular mirroring of 4:5:7 |
EKRING4.SCL | 12 | Single-tie circular mirroring of 4:5:6 |
EKRING5.SCL | 12 | Single-tie circular mirroring of 3:5:7 |
EKRING6.SCL | 12 | Single-tie circular mirroring of 6:7:9 |
EKRING7.SCL | 12 | Single-tie circular mirroring of 5:7:9 |
ELLIS-EB.SCL | 12 | Ellis' new equal beating temperament for pianofortes (1885) |
ELLIS.SCL | 12 | Alexander John Ellis' imitation equal temperament (1875) |
ELLIS_24.SCL | 24 | from P 421 of Helmholtz, 24-tones of JI for 1 manual harmonium |
ELLIS_HARM.SCL | 12 | Ellis's Just Harmonium |
ENH14.SCL | 7 | 14/11 Enharmonic |
ENH15.SCL | 7 | Tonos-15 Enharmonic |
ENH15_INV.SCL | 7 | Inverted Enharmonic Tonos-15 Harmonia |
ENH15_INV2.SCL | 7 | Inverted harmonic form of the enharmonic Tonos-15 |
ENH17.SCL | 7 | Tonos-17 Enharmonic |
ENH17_CON.SCL | 7 | Conjunct Tonos-17 Enharmonic |
ENH19.SCL | 7 | Tonos-19 Enharmonic |
ENH19_CON.SCL | 7 | Conjunct Tonos-19 Enharmonic |
ENH2.SCL | 7 | 1:2 Enharmonic. New genus 2 + 4 + 24 parts |
ENH21.SCL | 7 | Tonos-21 Enharmonic |
ENH21_INV.SCL | 7 | Inverted Enharmonic Tonos-21 Harmonia |
ENH21_INV2.SCL | 7 | Inverted harmonic form of the enharmonic Tonos-21 |
ENH23.SCL | 7 | Tonos-23 Enharmonic |
ENH23_CON.SCL | 7 | Conjunct Tonos-23 Enharmonic |
ENH25.SCL | 7 | Tonos-25 Enharmonic |
ENH25_CON.SCL | 7 | Conjunct Tonos-25 Enharmonic |
ENH27.SCL | 7 | Tonos-27 Enharmonic |
ENH27_INV.SCL | 7 | Inverted Enharmonic Tonos-27 Harmonia |
ENH27_INV2.SCL | 7 | Inverted harmonic form of the enharmonic Tonos-27 |
ENH29.SCL | 7 | Tonos-29 Enharmonic |
ENH29_CON.SCL | 7 | Conjunct Tonos-29 Enharmonic |
ENH31.SCL | 8 | Tonos-31 Enharmonic. Tone 24 alternates with 23 as MESE or A |
ENH31_CON.SCL | 8 | Conjunct Tonos-31 Enharmonic |
ENH33.SCL | 7 | Tonos-33 Enharmonic |
ENH33_CON.SCL | 7 | Conjunct Tonos-33 Enharmonic |
ENH_INVCON.SCL | 7 | Inverted Enharmonic Conjunct Phrygian Harmonia |
ENH_MOD.SCL | 7 | Enharmonic After Wilson's Purvi Modulations, See page 111 |
ENH_PERM.SCL | 7 | Permuted Enharmonic, After Wilson's Marwa Permutations, See page 110. |
EPIMORE.SCL | 40 | Epimore (Scholz) |
EPIMORE_ENH.SCL | 7 | New Epimoric Enharmonic, Dorian mode of the 4th new Enharmonic on Hofmann's list |
ERATOS_CHROM.SCL | 7 | Dorian mode of Eratosthenes's Chromatic. same as Ptol. Intense Chromatic |
ERATOS_DIAT.SCL | 7 | Dorian mode of Eratosthenes's Diatonic, Pythagorean |
ERATOS_ENH.SCL | 7 | Dorian mode of Eratosthenes's Enharmonic |
ERLANGEN.SCL | 12 | Revised Erlangen |
ERLICH1.SCL | 10 | Asymmetrical Major decatonic mode of 22-tET, Paul Erlich |
ERLICH2.SCL | 10 | Asymmetrical Minor decatonic mode of 22-tET, Paul Erlich |
ERLICH3.SCL | 10 | Symmetrical Major decatonic mode of 22-tET, Paul Erlich |
ERLICH4.SCL | 10 | Symmetrical Minor decatonic mode of 22-tET, Paul Erlich |
ET-MIX24.SCL | 180 | Mix of all equal temperaments from 1-24 (= 13-24) |
ET-MIX6.SCL | 12 | Mix of equal temperaments from 1-6 (= 4-6) |
ET7A.SCL | 7 | 7-tone equal temperament with pure fourth and fifth |
ETHIOPIAN.SCL | 12 | Ethiopian Tunings from Fortuna |
EULER.SCL | 12 | Euler (a mode of Ellis's duodene), genus [33355] |
EULER_DIAT.SCL | 8 | Euler's genus diatonicum veterum correctum |
EULER_ENH.SCL | 7 | Euler's Old Enharmonic, From Tentamen Novae Theoriae Musicae |
EULER_GM.SCL | 8 | Euler's Genus Musicum, Octony based on Archytas's Enharmonic |
EXP2.SCL | 7 | Two times expanded major triad |
EXP3.SCL | 30 | Three times expanded major triad |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
FACTORY.SCL | 12 | Equal beating temperament tuned by The Best Factory Tuners (1840) |
FACTORY2.SCL | 12 | Exact values of equal beating temperament of Best Factory Tuners (1840) |
FAREY3.SCL | 5 | Farey fractions between 0 and 1 until 3rd level, normalised by 2/1 |
FAREY4.SCL | 9 | Farey fractions between 0 and 1 until 4th level, normalised by 2/1 |
FAREY5.SCL | 20 | Farey fractions between 0 and 1 until 5th level, normalised by 2/1 |
FARNSWORTH.SCL | 7 | Farnsworth's scale |
FINNAMORE.SCL | 8 | David J. Finnamore, Tuning List 9 May '97. Tetrachordal scale, 17/16x19/17x64/57 |
FINNAMORE_JC.SCL | 7 | Chalmers' modification of Finnamore. Tuning List 9-5-97 19/18 x 9/8 x 64/57 |
FISHER.SCL | 12 | Alexander Metcalf Fisher's modified meantone temperament |
FISK-VOGEL.SCL | 12 | Modified meantone tuning of Fisk organ in Memorial Church at Stanford |
FJ-10TET.SCL | 10 | Franck Jedrzejewski continued fractions approx. of 10-tet |
FJ-11TET.SCL | 11 | Franck Jedrzejewski continued fractions approx. of 11-tet |
FJ-12TET.SCL | 12 | Franck Jedrzejewski continued fractions approx. of 12-tet |
FJ-13TET.SCL | 13 | Franck Jedrzejewski continued fractions approx. of 13-tet |
FJ-14TET.SCL | 14 | Franck Jedrzejewski continued fractions approx. of 14-tet |
FJ-15TET.SCL | 15 | Franck Jedrzejewski continued fractions approx. of 15-tet |
FJ-16TET.SCL | 16 | Franck Jedrzejewski continued fractions approx. of 16-tet |
FJ-17TET.SCL | 17 | Franck Jedrzejewski continued fractions approx. of 17-tet |
FJ-18TET.SCL | 18 | Franck Jedrzejewski continued fractions approx. of 18-tet |
FJ-19TET.SCL | 19 | Franck Jedrzejewski continued fractions approx. of 19-tet |
FJ-20TET.SCL | 20 | Franck Jedrzejewski continued fractions approx. of 20-tet |
FJ-21TET.SCL | 21 | Franck Jedrzejewski continued fractions approx. of 21-tet |
FJ-22TET.SCL | 22 | Franck Jedrzejewski continued fractions approx. of 22-tet |
FJ-23TET.SCL | 23 | Franck Jedrzejewski continued fractions approx. of 23-tet |
FJ-24TET.SCL | 24 | Franck Jedrzejewski continued fractions approx. of 24-tet |
FJ-26TET.SCL | 26 | Franck Jedrzejewski continued fractions approx. of 26-tet |
FJ-2TET.SCL | 2 | Franck Jedrzejewski continued fractions approx. of 2-tet |
FJ-30TET.SCL | 30 | Franck Jedrzejewski continued fractions approx. of 30-tet |
FJ-31TET.SCL | 31 | Franck Jedrzejewski continued fractions approx. of 31-tet |
FJ-36TET.SCL | 36 | Franck Jedrzejewski continued fractions approx. of 36-tet |
FJ-3TET.SCL | 3 | Franck Jedrzejewski continued fractions approx. of 3-tet |
FJ-41TET.SCL | 41 | Franck Jedrzejewski continued fractions approx. of 41-tet |
FJ-42TET.SCL | 42 | Franck Jedrzejewski continued fractions approx. of 42-tet |
FJ-43TET.SCL | 43 | Franck Jedrzejewski continued fractions approx. of 43-tet |
FJ-4TET.SCL | 4 | Franck Jedrzejewski continued fractions approx. of 4-tet |
FJ-53TET.SCL | 53 | Franck Jedrzejewski continued fractions approx. of 53-tet |
FJ-54TET.SCL | 54 | Franck Jedrzejewski continued fractions approx. of 54-tet |
FJ-55TET.SCL | 55 | Franck Jedrzejewski continued fractions approx. of 55-tet |
FJ-5TET.SCL | 5 | Franck Jedrzejewski continued fractions approx. of 5-tet |
FJ-60TET.SCL | 60 | Franck Jedrzejewski continued fractions approx. of 60-tet |
FJ-66TET.SCL | 66 | Franck Jedrzejewski continued fractions approx. of 66-tet |
FJ-6TET.SCL | 6 | Franck Jedrzejewski continued fractions approx. of 6-tet |
FJ-72TET.SCL | 72 | Franck Jedrzejewski continued fractions approx. of 72-tet |
FJ-78TET.SCL | 78 | Franck Jedrzejewski continued fractions approx. of 78-tet |
FJ-7TET.SCL | 7 | Franck Jedrzejewski continued fractions approx. of 7-tet |
FJ-84TET.SCL | 84 | Franck Jedrzejewski continued fractions approx. of 84-tet |
FJ-8TET.SCL | 8 | Franck Jedrzejewski continued fractions approx. of 8-tet |
FJ-90TET.SCL | 90 | Franck Jedrzejewski continued fractions approx. of 90-tet |
FJ-96TET.SCL | 96 | Franck Jedrzejewski continued fractions approx. of 96-tet |
FJ-9TET.SCL | 9 | Franck Jedrzejewski continued fractions approx. of 9-tet |
FOGLIANO1.SCL | 12 | Fogliano 1 |
FOGLIANO2.SCL | 12 | Fogliano 2, also Mandelbaum |
FOKKER-H.SCL | 19 | Fokker-H 5-limit per.bl. synt.comma&small diesis, KNAW B71, 1968 |
FOKKER-K.SCL | 19 | Fokker-K 5-limit per.bl. of 225/224 & 81/80 & 10976/10935, KNAW B71, 1968 |
FOKKER-L.SCL | 19 | Fokker-L 7-limit periodicity block 10976/10935 & 225/224 & 15625/15552, 1969 |
FOKKER-M.SCL | 31 | Fokker-M 7-limit periodicity block 81/80 & 225/224 & 1029/1024, KNAW B72, 1969 |
FOKKER-N.SCL | 31 | Fokker-N 7-limit periodicity block 81/80 & 2100875/2097152 & 1029/1024, 1969 |
FOKKER-P.SCL | 31 | Fokker-P 7-limit periodicity block 65625/65536 & 6144/6125 & 2401/2400, 1969 |
FOKKER-Q.SCL | 53 | Fokker-Q 7-limit per.bl. 225/224 & 4000/3969 & 6144/6125, KNAW B72, 1969 |
FOKKER-R.SCL | 53 | Fokker-R 7-limit per.bl. 4375/4374 & 65625/65536 & 6144/6125, 1969 |
FOKKER-S.SCL | 53 | Fokker-S 7-limit per.bl. 4375/4374 & 323/322 & 64827/65536, 1969 |
FOKKER_12.SCL | 12 | Fokker's 7-limit 12-tone just scale |
FOKKER_12A.SCL | 12 | Fokker's 7-limit periodicity block of 2048/2025 & 3969/4000 & 225/224 |
FOKKER_12B.SCL | 12 | Fokker's 7-limit semitone scale KNAW B72, 1969 |
FOKKER_12C.SCL | 12 | Fokker's 7-limit complementary semitone scale, KNAW B72, 1969 |
FOKKER_22.SCL | 22 | Fokker's 22-tone periodicity block of 2048/2025 & 3125/3072. KNAW B71, 1968 |
FOKKER_22A.SCL | 22 | Fokker's 22-tone periodicity block of 2048/2025 & 2109375/2097152 = semicomma |
FOKKER_31.SCL | 31 | Fokker's 31-tone just system |
FOKKER_31A.SCL | 31 | Fokker's 31-tone first alternate septimal tuning |
FOKKER_31B.SCL | 31 | Fokker's 31-tone second alternate septimal tuning |
FOKKER_31C.SCL | 31 | Fokker's 31-tone periodicity block of 81/80 & 2109375/2097152 = semicomma |
FOKKER_31D.SCL | 31 | Fokker's 31-tone periodicity block of 81/80 & Wurschmidt's comma |
FOKKER_41.SCL | 41 | Fokker's 7-limit supracomma per.bl. 10976/10935 & 225/224 & 496125/262144 |
FOKKER_41A.SCL | 41 | Fokker's 41-tone periodicity block of schisma & 34171875/33554432 |
FOKKER_41B.SCL | 41 | Fokker's 41-tone periodicity block of schisma & 3125/3072 |
FOKKER_53.SCL | 53 | Fokker's 53-tone system, degree 37 has alternatives |
FOKKER_53A.SCL | 53 | Fokker's 53-tone periodicity block of schisma & kleisma |
FOKKER_53B.SCL | 53 | Fokker's 53-tone periodicity block of schisma & 2109375/2097152 |
FOKKER_AV.SCL | 31 | Fokker's suggestion for a shrinked octave by averaging approximations |
FOKKER_SR.SCL | 22 | Fokker's 7-limit sruti scale, KNAW B72, 1969 |
FOKKER_SR2.SCL | 22 | Fokker's complementary 7-limit sruti scale, KNAW B72, 1969 |
FORSTER.SCL | 32 | Cris Forster's Chrysalis tuning, XH 7+8 |
FORTUNA.SCL | 12 | 11-limit scale from Clem Fortuna |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
GAMBIA.SCL | 7 | Mandinka balafon scale |
GAMELAN.SCL | 12 | from Clem Fortuna out of Helmholtz, Slendro on black, F A B C E F as Pelog |
GAMELAN_OM.SCL | 12 | Other Music gamelan (7 limit black keys) |
GAMELAN_UDAN.SCL | 12 | Gamelan Udan Mas (approx) s6,p6,p7,s1,p1,s2,p2,p3,s3,p4,s5,p5 |
GANASSI.SCL | 12 | Ganassi |
GARCIA.SCL | 29 | Linear 29-tone scale by Jose L. Garcia, 1988 15/13-52/45 alternating |
GENOVESE.SCL | 65 | Denny Genovese's 65-note scale. 3/2=384 Hz |
GENOVESE_38.SCL | 38 | Denny Genovese's 38-note scale. Harm 1..16 x Subh. 1..12 |
GF1-2.SCL | 16 | 16-note scale with all possible quadruplets of 50 & 100 c. Galois Field GF(2) |
GF2-3.SCL | 16 | 16-note scale with all possible quadruplets of 60 & 90 c. Galois Field GF(2) |
GILSON7.SCL | 12 | Gilson septimal |
GILSON7A.SCL | 12 | Gilson septimal 2 |
GILSON_10.SCL | 10 | Gilson's 10-tone JI |
GOLDEN_5.SCL | 5 | Golden pentatonic |
GRADY.SCL | 14 | Kraig Grady, letter to Lou Harrison, published in 1/1 7 (1) 1991 p 5. |
GRADY7.SCL | 12 | Kraig Grady's 7-limit "Centaur" scale, 1987. See Xenharmonikon 16 |
GRAMMATEUS.SCL | 12 | H. Grammateus (1518). Wolf fifths at B-F# and Bb-F |
GRAUPNER.SCL | 12 | Johann Gottlieb Graupner's temperament (1819) |
GUMBENG.SCL | 5 | Scale of gumbeng ensemble, Java. 1/1=440 Hz. |
GUNKALI.SCL | 7 | Indian mode Gunkali, see Danielou: Intr. to the Stud. of Mus. Scales, p.175 |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
HALFEFG357777.SCL | 10 | Half genus 357777 |
HAMILTON.SCL | 12 | Elsie Hamilton's gamut, from article The Modes of Ancient Greek Music (1953) |
HAMILTON_JC.SCL | 12 | Chalmers' permutation of Hamilton's gamut. Diatonic notes on white |
HAMILTON_JC2.SCL | 12 | EH gamut, diatonic notes on white and drops 17 for 25. JC Dorian Harmonia on C |
HANDBLUE.SCL | 12 | "Handy Blues" of Pitch Palette, 7-limit |
HANDEL.SCL | 12 | Well temperament according to Georg Friedrich Ha"ndel's rules (c. 1780) |
HANSON_19.SCL | 19 | JI version of Hanson's 19 out of 53-tET scale |
HARM-DORENINV1.SCL | 7 | 1st Inverted Schlesinger's Enharmonic Dorian Harmonia |
HARM-DORINV1.SCL | 7 | 1st Inverted Schlesinger's Chromatic Dorian Harmonia |
HARM-LYDCHRINV1.SCL | 7 | 1st Inverted Schlesinger's Chromatic Lydian Harmonia |
HARM-LYDENINV1.SCL | 7 | 1st Inverted Schlesinger's Enharmonic Lydian Harmonia |
HARM-MIXOCHRINV1.SCL | 7 | 1st Inverted Schlesinger's Chromatic Mixolydian Harmonia |
HARM-MIXOENINV1.SCL | 7 | 1st Inverted Schlesinger's Enharmonic Mixolydian Harmonia |
HARM10.SCL | 13 | 6/7/8/9/10 harmonics |
HARM15.SCL | 15 | Fifth octave of the harmonic overtone series |
HARM16-32.SCL | 16 | Harmonics 16-32 |
HARM16.SCL | 30 | First 16 harmonics and subharmonics |
HARM1C-DORIAN.SCL | 7 | Harm1C-Dorian |
HARM1C-HYPOD.SCL | 8 | HarmC-Hypodorian |
HARM1C-HYPOL.SCL | 8 | HarmC-Hypolydian |
HARM1C-LYDIAN.SCL | 8 | Harm1C-Lydian |
HARM1C-MIX.SCL | 7 | Harm1C-Con Mixolydian |
HARM1C-MIXOLYDIAN.SCL | 7 | Harm1C-Mixolydian |
HARM24.SCL | 12 | Harmonics 12 to 24 |
HARM24_2.SCL | 12 | Harmonics 12 to 24, mode 9 |
HARM3.SCL | 3 | Third octave of the harmonic overtone series |
HARM30.SCL | 59 | First 30 harmonics and subharmonics |
HARM32-64.SCL | 32 | Harmonics 32-64 |
HARM37ODD.SCL | 19 | Odd harmonics until 37 |
HARM4.SCL | 7 | Fourth octave of the harmonic overtone series |
HARM6-12.SCL | 20 | First 12 harmonics of 6th through 12th harmonics |
HARM6.SCL | 6 | Harmonics 6-12 |
HARM60-30.SCL | 12 | Harmonics 60 to 30 (Perkis) |
HARM7LIM.SCL | 47 | 7-limit harmonics |
HARM8.SCL | 8 | Harmonics 8-16, Badings: "lydo-mixolydisch" |
HARM9.SCL | 10 | 6/7/8/9 harmonics, First 9 overtones of 5th through 9th harmonics |
HARMC-HYPOP.SCL | 9 | HarmC-Hypophrygian |
HARMD-15.SCL | 7 | HarmD-15-Harmonia |
HARMD-CONMIX.SCL | 7 | HarmD-ConMixolydian |
HARMD-HYPOD.SCL | 9 | HarmD-Hypodorian |
HARMD-HYPOL.SCL | 8 | HarmD-Hypolydian |
HARMD-HYPOP.SCL | 9 | HarmD-Hypophrygian |
HARMD-LYD.SCL | 9 | HarmD-Lydian |
HARMD-MIX.SCL | 7 | HarmD-Mixolydian. Harmonics 7-14 |
HARMD-PHR.SCL | 12 | HarmD-Phryg (with 5 extra tones) |
HARME-HYPOD.SCL | 8 | HarmE-Hypodorian |
HARME-HYPOL.SCL | 8 | HarmE-Hypolydian |
HARME-HYPOP.SCL | 9 | HarmE-Hypophrygian |
HARMJC-15.SCL | 12 | Rationalized JC Sub-15 Harmonia on C. MD=15, No planetary assignment. |
HARMJC-17-2.SCL | 12 | Rationalized JC Sub-17 Harmonia on C. MD=17, No planetary assignment. |
HARMJC-17.SCL | 12 | Rationalized JC Sub-17 Harmonia on C. MD=17, No planetary assignment. |
HARMJC-19-2.SCL | 12 | Rationalized JC Sub-19 Harmonia on C. MD=19, No planetary assignment. |
HARMJC-19.SCL | 12 | Rationalized JC Sub-19 Harmonia on C. MD=19, No planetary assignment. |
HARMJC-21.SCL | 12 | Rationalized JC Sub-21 Harmonia on C. MD=21, No planetary assignment. |
HARMJC-23-2.SCL | 12 | Rationalized JC Sub-23 Harmonia on C. MD=23, No planetary assignment. |
HARMJC-23.SCL | 12 | Rationalized JC Sub-23 Harmonia on C. MD=23, No planetary assignment. |
HARMJC-25.SCL | 12 | Rationalized JC Sub-25 Harmonia on C. MD=25, No planetary assignment. |
HARMJC-27.SCL | 12 | Rationalized JC Sub-27 Harmonia on C. MD=27, No planetary assignment. |
HARMJC-HYPOD16.SCL | 12 | Rationalized JC Hypodorian Harmonia on C. Saturn Scale on C, MD=16. (Steiner) |
HARMJC-HYPOL20.SCL | 12 | Rationalized JC Hypolydian Harmonia on C. Mars scale on C., MD=20 |
HARMJC-HYPOP18.SCL | 12 | Rationalized JC Hypophrygian Harmonia on C. Jupiter scale on C, MD =18 |
HARMJC-LYDIAN13.SCL | 12 | Rationalized JC Lydian Harmonia on C. Mercury scale on C, MD = 26 or 13 |
HARMJC-MIX14.SCL | 12 | Rationalized JC Mixolydian Harmonia on C. Moon Scale on C, MD = 14 |
HARMJC-PHRYG12.SCL | 12 | Rationalized JC Phrygian Harmonia on C. Venus scale on C, MD = 24 or 12 |
HARMONICAL.SCL | 12 | See pp 17 and 466-468 Helmholtz. lower 4 oct. Instr. designed & tuned by Ellis |
HARMONICAL_UP.SCL | 12 | Upper 2 octaves of Ellis's Harmonical |
HARM_BASTARD.SCL | 7 | Schlesinger's "Bastard" Hypodorian Harmonia & inverse 1)7 from 1.3.5.7.9.11.13 |
HARM_BASTINV.SCL | 7 | Inverse Schlesinger's "Bastard" Hypodorian Harmonia & 1)7 from 1.3.5.7.9.11.13 |
HARM_DARREG.SCL | 24 | Darreg Harmonics 4-15 |
HARM_MEAN.SCL | 9 | Harm. Mean 9-tonic 8/7 is HM of 1/1 and 4/3, etc. |
HARRISON.SCL | 12 | John Harrison's temperament (1775), almost 3/10-comma |
HARRISON_16.SCL | 16 | Lou Harrison 16-tone |
HARRISON_5.SCL | 5 | From Lou Harrison, a pelog style pentatonic |
HARRISON_5_1.SCL | 5 | From Lou Harrison, a pelog style pentatonic |
HARRISON_5_2.SCL | 5 | From Lou Harrison, a pelog style pentatonic |
HARRISON_5_3.SCL | 5 | From Lou Harrison, a pelog style pentatonic |
HARRISON_5_4.SCL | 5 | From Lou Harrison, a pelog style pentatonic |
HARRISON_8.SCL | 8 | Harrison 8-tone from Serenade for Guitar |
HARRISON_DIAT.SCL | 7 | From Lou Harrison, a soft diatonic |
HARRISON_JOY.SCL | 6 | Lou Harrison's Joyous 6 |
HARRISON_MID.SCL | 7 | Lou Harrison mid mode |
HARRISON_MID2.SCL | 7 | Lou Harrison mid mode 2 |
HARRISON_MIN.SCL | 5 | From Lou Harrison, a symmetrical pentatonic with minor thirds |
HARRISON_MIX1.SCL | 5 | A "mixed type" pentatonic, Lou Harrison |
HARRISON_MIX2.SCL | 5 | A "mixed type" pentatonic, Lou Harrison |
HARRISON_MIX3.SCL | 5 | A "mixed type" pentatonic, Lou Harrison |
HARRISON_MIX4.SCL | 5 | A "mixed type" pentatonic, Lou Harrison |
HAWKES.SCL | 12 | William Hawkes' modified 1/5-comma mean-tone (1807) |
HEBDOME1.SCL | 58 | Wilson 1.3.5.7.9.11.13.15 hebdomekontany, 1.3.5.7 tonic |
HELMHOLTZ.SCL | 7 | Helmholtz's Chromatic scale. |
HELMHOLTZ_24.SCL | 24 | Simplified Helmholtz 24 |
HELMHOLTZ_PURE.SCL | 24 | Helmholtz's two-keyboard harmonium tuning untempered |
HELMHOLTZ_TEMP.SCL | 24 | Helmholtz's two-keyboard harmonium tuning |
HEM_CHROM.SCL | 7 | Hemiolic Chromatic genus has the strong or 1:2 division of the 12/11 pyknon |
HEM_CHROM11.SCL | 7 | 11'al Hemiolic Chromatic genus with a CI of 11/9, Winnington-Ingram |
HEM_CHROM13.SCL | 7 | 13'al Hemiolic Chromatic or neutral-third genus has a CI of 16/13 |
HEM_CHROM2.SCL | 7 | 1:2 Hemiolic Chromatic genus 3 + 6 + 21 parts |
HEPT_DIAMOND.SCL | 25 | Inverted-Prime Heptatonic Diamond based on Archytas's Enharmonic |
HEPT_DIAMONDI.SCL | 25 | Prime-Inverted Heptatonic Diamond based on Archytas' Enharmonic |
HEPT_DIAMONDP.SCL | 27 | Heptatonic Diamond based on Archytas's Enharmonic, 27 tones |
HERF.SCL | 14 | Sims:Reflections on This and That, 1991. Used by Herf in Ekmelischer Gesang |
HEXAGONAL13.SCL | 13 | Star hexagonal 13-tone scale |
HEXAGONAL37.SCL | 37 | Star hexagonal 37-tone scale |
HEXANIC.SCL | 11 | Composed of 1.3.5.45, 1.3.5.75, 1.3.5.9, and 1.3.5.25 hexanies |
HEXANY.SCL | 12 | Hexany Cluster 1 |
HEXANY1.SCL | 6 | Two out of 1 3 5 7 hexany |
HEXANY10.SCL | 6 | 1.3.5.9 Hexany |
HEXANY11.SCL | 6 | 1.3.7.9 Hexany on 1.3 |
HEXANY12.SCL | 6 | 3.5.7.9 Hexany on 3.9 |
HEXANY13.SCL | 6 | 1.3.5.11 Hexany on 1.11 |
HEXANY14.SCL | 6 | 5.11.13.15 Hexany (5.15), used in The Giving, by Stephen J. Taylor |
HEXANY15.SCL | 5 | 1.3.5.15 2)4 hexany (1.15 tonic) degenerate, symmetrical pentatonic |
HEXANY16.SCL | 5 | 1.3.9.27 Hexany, a degenerate pentatonic form |
HEXANY17.SCL | 5 | 1.5.25.125 Hexany, a degenerate pentatonic form |
HEXANY18.SCL | 5 | 1.7.49.343 Hexany, a degenerate pentatonic form |
HEXANY19.SCL | 5 | 1.5.7.35 Hexany, a degenerate pentatonic form |
HEXANY2.SCL | 12 | Hexany Cluster 2 |
HEXANY20.SCL | 6 | 3.5.7.105 Hexany |
HEXANY21.SCL | 6 | 3.5.9.135 Hexany |
HEXANY21A.SCL | 7 | 3.5.9.135 Hexany + 4/3. Is Didymos Diatonic tetrachord on 1/1 and inv. on 3/2 |
HEXANY22.SCL | 5 | 1.11.121.1331 Hexany, a degenerate pentatonic form |
HEXANY23.SCL | 5 | 1.3.11.33 Hexany, degenerate pentatonic form |
HEXANY24.SCL | 5 | 1.5.11.55 Hexany, a degenerate pentatonic form |
HEXANY25.SCL | 5 | 1.7.11.77 Hexany, a degenerate pentatonic form |
HEXANY26.SCL | 5 | 1.9.11.99 Hexany, a degenerate pentatonic form |
HEXANY3.SCL | 12 | Hexany Cluster 3 |
HEXANY4.SCL | 12 | Hexany Cluster 4 |
HEXANY49.SCL | 6 | 1.3.21.49 2)4 hexany (1.21 tonic) |
HEXANY5.SCL | 12 | Hexany Cluster 5 |
HEXANY6.SCL | 12 | Hexany Cluster 6 |
HEXANY7.SCL | 12 | Hexany Cluster 7 |
HEXANY8.SCL | 12 | Hexany Cluster 8 |
HEXANY9.SCL | 6 | 1.3.5.7 Hexany on 5.7 |
HEXANYS.SCL | 12 | Hexanys 1 3 5 7 9 |
HEXANYS2.SCL | 12 | Hexanys 1 3 7 11 13 |
HEXANY_FLANK.SCL | 12 | Hexany Flanker, 7-limit, from Wilson |
HEXANY_TETR.SCL | 6 | Complex 12 of p. 115, a hexany based on Archytas's Enharmonic |
HEXANY_TRANS.SCL | 6 | Complex 1 of p. 115, a hexany based on Archytas's Enharmonic |
HEXANY_TRANS2.SCL | 6 | Complex 2 of p. 115, a hexany based on Archytas's Enharmonic |
HEXANY_TRANS3.SCL | 6 | Complex 9 of p. 115, a hexany based on Archytas's Enharmonic |
HEXANY_U2.SCL | 25 | Hexany union = genus [335577] minus two corners |
HEXANY_UNION.SCL | 19 | The union of all of the pitches of the 1.3.5.7 hexany on each tone as 1/1 |
HEXANY_UROT.SCL | 24 | Aggregate rotations of 1.3.5.7 hexany, 1.3 = 1/1 |
HIGGS.SCL | 7 | From Greg Higgs announcement of the formation of an Internet Tuning list |
HIPKINS.SCL | 7 | Hipkins' Chromatic |
HIRAJOSHI.SCL | 5 | Observed Japanese pentatonic koto scale |
HIRAJOSHI2.SCL | 5 | Another Japanese pentatonic koto scale |
HOFMANN1.SCL | 7 | Hofmann's Enharmonic #1, Dorian mode |
HOFMANN2.SCL | 7 | Hofmann's Enharmonic #2, Dorian mode |
HOFMANN_CHROM.SCL | 7 | Hofmann's Chromatic |
HOLDER.SCL | 12 | William Holder's equal beating meantone temperament (1694). 3/2 beats 2.8 Hz |
HOLDER2.SCL | 12 | Holder's irregular e.b. temperament with improved Eb and G# |
HO_MAI_NHI.SCL | 5 | Ho Mai Nhi (Nam Hue) dan tranh scale, Vietnam |
HUMMEL.SCL | 12 | Johann Nepomuk Hummel's quasi-equal temperament (1829) |
HUMMEL2.SCL | 12 | Johann Nepomuk Hummel's temperament according to the second bearing plan |
HUSMANN.SCL | 6 | Tetrachord division according to Husmann |
HYPER_ENH.SCL | 7 | 13/10 HyperEnharmonic. This genus is at the limit of usable tunings |
HYPER_ENH2.SCL | 7 | Hyperenharmonic genus from Kathleen Schlesinger's enharmonic Phrygian Harmonia |
HYPODORIAN_PIS.SCL | 15 | Diatonic Perfect Immutable System in the Hypodorian Tonos |
HYPOD_CHROM.SCL | 12 | Hypodorian Chromatic Tonos |
HYPOD_CHROM2.SCL | 7 | Schlesinger's Chromatic Hypodorian Harmonia |
HYPOD_CHROMENH.SCL | 7 | Schlesinger's Hypodorian Harmonia in a mixed chromatic-enharmonic genus |
HYPOD_CHROMINV.SCL | 7 | A harmonic form of Schlesinger's Chromatic Hypodorian Inverted |
HYPOD_DIAT.SCL | 12 | Hypodorian Diatonic Tonos |
HYPOD_DIAT2.SCL | 8 | Schlesinger's Hypodorian Harmonia, a subharmonic series through 13 from 16 |
HYPOD_DIATCON.SCL | 7 | A Hypodorian Diatonic with its own trite synemmenon replacing paramese |
HYPOD_DIATINV.SCL | 9 | Inverted Schlesinger's Hypodorian Harmonia, a harmonic series from 8 from 16 |
HYPOD_ENH.SCL | 12 | Hypodorian Enharmonic Tonos |
HYPOD_ENHINV.SCL | 7 | Inverted Schlesinger's Enharmonic Hypodorian Harmonia |
HYPOD_ENHINV2.SCL | 7 | A harmonic form of Schlesinger's Hypodorian enharmonic inverted |
HYPOD_INV.SCL | 7 | Inverted Schlesinger's Chromatic Hypodorian Harmonia |
HYPOLYDIAN_PIS.SCL | 15 | The Diatonic Perfect Immutable System in the Hypolydian Tonos |
HYPOL_CHROM.SCL | 8 | Schlesinger's Hypolydian Harmonia in the chromatic genus |
HYPOL_CHROMINV.SCL | 8 | Inverted Schlesinger's Chromatic Hypolydian Harmonia |
HYPOL_CHROMINV2.SCL | 7 | harmonic form of Schlesinger's Chromatic Hypolydian inverted |
HYPOL_CHROMINV3.SCL | 7 | A harmonic form of Schlesinger's Chromatic Hypolydian inverted |
HYPOL_DIAT.SCL | 8 | Schlesinger's Hypolydian Harmonia, a subharmonic series through 13 from 20 |
HYPOL_DIATCON.SCL | 7 | A Hypolydian Diatonic with its own trite synemmenon replacing paramese |
HYPOL_DIATINV.SCL | 8 | Inverted Schlesinger's Hypolydian Harmonia, a harmonic series from 10 from 20 |
HYPOL_ENH.SCL | 8 | Schlesinger's Hypolydian Harmonia in the enharmonic genus |
HYPOL_ENHINV.SCL | 8 | Inverted Schlesinger's Enharmonic Hypolydian Harmonia |
HYPOL_ENHINV2.SCL | 7 | A harmonic form of Schlesinger's Hypolydian enharmonic inverted |
HYPOL_ENHINV3.SCL | 7 | A harmonic form of Schlesinger's Hypolydian enharmonic inverted |
HYPOL_PENT.SCL | 8 | Schlesinger's Hypolydian Harmonia in the pentachromatic genus |
HYPOL_TRI.SCL | 8 | Schlesinger's Hypolydian Harmonia in the first trichromatic genus |
HYPOL_TRI2.SCL | 8 | Schlesinger's Hypolydian Harmonia in the second trichromatic genus |
HYPOPHRYG_PIS.SCL | 15 | The Diatonic Perfect Immutable System in the Hypophrygian Tonos |
HYPOP_CHROM.SCL | 12 | Hypophrygian Chromatic Tonos |
HYPOP_CHROMENH.SCL | 7 | Schlesinger's Hypophrygian Harmonia in a mixed chromatic-enharmonic genus |
HYPOP_CHROMINV.SCL | 7 | Inverted Schlesinger's Chromatic Hypophrygian Harmonia |
HYPOP_CHROMINV2.SCL | 7 | A harmonic form of Schlesinger's Chromatic Hypophrygian inverted |
HYPOP_DIAT.SCL | 12 | Hypophrygian Diatonic Tonos |
HYPOP_DIAT2.SCL | 8 | Schlesinger's Hypophrygian Harmonia |
HYPOP_DIATCON.SCL | 7 | A Hypophrygian Diatonic with its own trite synemmenon replacing paramese |
HYPOP_DIATINV.SCL | 8 | Inverted Schlesinger's Hypophrygian Harmonia, a harmonic series from 9 from 18 |
HYPOP_ENH.SCL | 12 | Hypophrygian Enharmonic Tonos |
HYPOP_ENHINV.SCL | 7 | Inverted Schlesinger's Enharmonic Hypophrygian Harmonia |
HYPOP_ENHINV2.SCL | 7 | A harmonic form of Schlesinger's Hypophrygian enharmonic inverted |
HYPO_CHROM.SCL | 12 | Hypolydian Chromatic Tonos |
HYPO_DIAT.SCL | 12 | Hypolydian Diatonic Tonos |
HYPO_ENH.SCL | 12 | Hypolydian Enharmonic Tonos |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
IIVV17.SCL | 21 | 17-limit IIVV |
IND-HRDAYA1.SCL | 12 | From Hrdayakautaka of Hrdaya Narayana (17th c) Bhatkande's interpretation |
IND-HRDAYA2.SCL | 12 | From Hrdayakautaka of Hrdaya Narayana (17th c) Levy's interpretation |
INDIAN-DK.SCL | 9 | Raga Darbari Kanada |
INDIAN-ELLIS.SCL | 22 | Ellis's Indian Chromatic, theoretical #74 of App.XX, p.517 of Helmholtz |
INDIAN-ERLICH.SCL | 22 | Indian shrutis Paul Erlich proposal |
INDIAN-HAHN.SCL | 22 | Indian shrutis Paul Hahn proposal |
INDIAN-INVROT.SCL | 12 | Inverted and rotated North Indian gamut |
INDIAN-MAGRAMA.SCL | 7 | Indian mode Ma-grama (Sa Ri Ga Ma Pa Dha Ni Sa) |
INDIAN-NEWBENGALI.SCL | 22 | Modern Bengali scale,S.M. Tagore: The mus. scales of the Hindus,Calcutta 1884 |
INDIAN-OLD2ELLIS.SCL | 22 | Ellis Old Indian Chrom2, Helmholtz, p. 517. This is a 4 cent appr. to #73 |
INDIAN-OLDELLIS.SCL | 22 | Ellis Old Indian Chromatic, Helmholtz, p. 517. This is a 0.5 cent appr. to #73 |
INDIAN-PARTCH.SCL | 22 | Partch's Indian Chromatic, Exposition of Monophony, 1933. |
INDIAN-PERK.SCL | 22 | Indian 22 Perkis |
INDIAN-RAJA.SCL | 6 | A folk scale from Rajasthan, India |
INDIAN-SAGRAMA.SCL | 7 | Indian mode Sa-grama (Sa Ri Ga Ma Pa Dha Ni Sa), inverse of Didymus' diatonic |
INDIAN-SRUTIHARM.SCL | 22 | B. Chaitanya Deva's sruti harmonium. The Music of India, 1981, p. 109 |
INDIAN-SRUTIVINA.SCL | 22 | Raja S.M. Tagore's sruti vina, measured by Ellis and Hipkins, 1886. 1/1=241.2 |
INDIAN-SRUTIVINA2.SCL | 22 | S. Ramanathan's sruti vina, 1973. In B.C. Deva, The Music of India, p. 110 |
INDIAN-VINA.SCL | 12 | Observed South Indian tuning of a vina, Ellis |
INDIAN-VINA2.SCL | 24 | Observed tuning of old vina in Tanjore Palace, Ellis and Hipkins. 1/1=210.7 Hz |
INDIAN-VINA3.SCL | 12 | Tuning of K.S. Subramanian's vina (1983) |
INDIAN-VINARAT.SCL | 22 | S.M. Tagore's sruti vina, rationalised OdC. 1/1=241.2 Hz |
INDIAN.SCL | 22 | Indian shruti scale |
INDIAN2.SCL | 22 | Indian shruti scale with tritone 64/45 schisma lower (Mr.Devarajan, Madurai) |
INDIAN3.SCL | 22 | Indian shruti scale with 32/31 and 31/16 and tritone schisma lower |
INDIAN_12.SCL | 12 | North Indian Gamut, modern Hindustani gamut out of 22 or more shrutis |
INDIAN_12C.SCL | 12 | Carnatic gamut. Kuppuswami: Carnatic music and the Tamils, p. v |
INDIAN_A.SCL | 7 | One observed indian mode |
INDIAN_B.SCL | 7 | Observed Indian mode |
INDIAN_C.SCL | 7 | Observed Indian mode |
INDIAN_CMP.SCL | 22 | Shruti scale with a more compact lattice, OdC |
INDIAN_D.SCL | 7 | Indian D (Ellis, correct) |
INDIAN_E.SCL | 7 | Observed Indian mode |
INDIAN_RAT.SCL | 22 | Indian Raga, From Fortuna, after Helmholtz, ratios by JC |
INDIAN_ROT.SCL | 12 | Rotated North Indian Gamut |
IONIC.SCL | 7 | Ancient greek Ionic |
IRAN_DIAT.SCL | 7 | Iranian Diatonic from Dariush Anooshfar, Safi-a-ddin Armavi's scale from 125 ET |
IRAQ.SCL | 8 | Iraq 8-tone scale, Ellis |
ISFAHAN_5.SCL | 5 | Isfahan (IG #2, DF #8), from Rouanet |
ITER_FIFTH.SCL | 10 | Iterated 3/2 Scale, IE=3/2, PD=3, SD=2 |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
JANKE1.SCL | 12 | Rainer Janke, Temperatur I |
JANKE2.SCL | 12 | Rainer Janke, Temperatur II |
JANKE3.SCL | 12 | Rainer Janke, Temperatur III |
JANKE4.SCL | 12 | Rainer Janke, Temperatur IV |
JANKE5.SCL | 12 | Rainer Janke, Temperatur V |
JANKE6.SCL | 12 | Rainer Janke, Temperatur VI |
JANKE7.SCL | 12 | Rainer Janke, Temperatur VII |
JEMBLUNG1.SCL | 5 | Scale of bamboo gamelan jemblung from Kalijering, slendro-like. 1/1=590 Hz. |
JEMBLUNG2.SCL | 5 | Bamboo gamelan jemblung at Royal Batavia Society. 1/1=504 Hz. |
JI-RSR_12.SCL | 12 | RSR - 7 limit JI |
JI_12.SCL | 12 | Basic JI with 7-limit tritone |
JI_13.SCL | 13 | 5-limit 12-tone symmetrical scale with two tritones |
JI_16.SCL | 16 | 7-limit rational interpretation of 16-tET. OdC |
JI_17.SCL | 17 | 3 and 7 prime rational interpretation of 17-tET. OdC |
JI_19.SCL | 19 | 5-limit 19-tone scale |
JI_20.SCL | 20 | 3 and 7 prime rational interpretation of 20-tET. OdC |
JI_22.SCL | 22 | 5-limit 22-tone scale |
JI_22A.SCL | 22 | 11-limit rational interpretation of 22-tET, Bill Alves, tuning list 9-1-98 |
JI_22B.SCL | 22 | 3,5,11-prime rational interpretation of 22-tET |
JI_22C.SCL | 22 | 31-limit rational interpretation of 22-tET, Marion McCoskey |
JI_22D.SCL | 22 | 7-limit rational interpretation of 22-tET, OdC |
JI_31.SCL | 31 | 7-limit 31-tone scale. OdC |
JI_34.SCL | 34 | 5-limit 34-tone scale. OdC |
JI_34A.SCL | 34 | 5-limit parallelepiped 34-tone scale. OdC |
JI_53.SCL | 53 | 7-limit 53-tone scale. OdC |
JI_53A.SCL | 53 | 7-limit 53-tone scale. OdC |
JI_7.SCL | 7 | 7-limit rational interpretation of 7-tET. OdC |
JOHNSTON.SCL | 12 | Ben Johnston's combined otonal-utonal scale |
JOHNSTON_21.SCL | 21 | Johnston 21-note just enharmonic scale |
JOHNSTON_22.SCL | 22 | Johnston 22-note scale from end of string quartet nr. 4 |
JOHNSTON_25.SCL | 25 | Johnston 25-note just enharmonic scale |
JORGENSEN.SCL | 12 | Jorgensen's 5&7 temperament |
JOUSSE.SCL | 12 | Temperament of Jean Jousse (1832) |
JOUSSE2.SCL | 12 | Jean Jousse's quasi-equal temperament |
JUST5_31.SCL | 31 | A just 5-limit 31-tone scale |
JUST7_12.SCL | 12 | 7-limit 12 tone scale |
JUST7_31.SCL | 31 | A just 7-limit 31-tone scale |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
KANZELMEYER_11.SCL | 11 | Bruce Kanzelmeyer, 11 harmonics from 16 to 32. Base 388.3614815 Hz |
KANZELMEYER_18.SCL | 18 | Bruce Kanzelmeyer, 18 harmonics from 32 to 64. Base 388.3614815 Hz |
KANZELMEYER_32.SCL | 32 | Bruce Kanzelmeyer, 32 harmonics from 32 to 64. Base 388.3614815 Hz |
KAYOLONIAN.SCL | 19 | 19-tone 5-limit scale of the Kayenian Imperium on Kayolonia (reeks van Sjauriek) |
KAYOLONIANA.SCL | 19 | Amendment by Rasch of Kayolonian scale's note 9 |
KAYOLONIAN_12.SCL | 12 | See Barnard: De Keiaanse Muziek, p. 11. (uitgebreide reeks) |
KAYOLONIAN_40.SCL | 40 | See Barnard: De Keiaanse Muziek |
KAYOLONIAN_F.SCL | 9 | Kayolonian scale F |
KAYOLONIAN_P.SCL | 9 | Kayolonian scale P |
KAYOLONIAN_S.SCL | 9 | Kayolonian scale S |
KAYOLONIAN_T.SCL | 9 | Kayolonian scale T |
KAYOLONIAN_Z.SCL | 9 | Kayolonian scale Z |
KELLETAT.SCL | 12 | Herbert Kelletat's Bach-tuning (1967) |
KELLNER.SCL | 12 | Herbert Anton Kellner's Bach tuning. 5 1/5 Pyth. comma and 7 pure fifths |
KEPLER1.SCL | 12 | Kepler 1 |
KEPLER2.SCL | 12 | Kepler 2 |
KILROY.SCL | 12 | Kilroy |
KIMBALL.SCL | 18 | Buzz Kimball 18-note just scale |
KIMBALL_53.SCL | 53 | Buzz Kimball 53-note just scale |
KIRN-STAN.SCL | 12 | Kirnberger temperament improved by Charles Earl Stanhope (1806) |
KIRNBERGER.SCL | 12 | Kirnberger's scale |
KIRNBERGER1.SCL | 12 | Kirnberger 1 |
KIRNBERGER2.SCL | 12 | Kirnberger 2: 1/2 synt. comma |
KIRNBERGER3.SCL | 12 | Kirnberger 3: 1/4 synt. comma |
KLONARIS.SCL | 12 | Scale by Johnny Klonaris |
KNOT.SCL | 24 | Smallest knot in 3-D, American Scientist, Nov-Dec '97 p506-510, trefoil knot |
KOLINSKY.SCL | 12 | Kolinsky's 7th root of 3/2, also invented by Augusto Novaro |
KOREA_5.SCL | 5 | According to Lou Harrison, called "the Delightful" in Korea |
KORNERUP.SCL | 19 | Kornerup's temperament with fifth of (15 - sqrt 5) / 22 octaves |
KORNERUP_11.SCL | 11 | Kornerup's doric minor |
KRAEH_22.SCL | 22 | Kraehenbuehl & Schmidt 7-limit 22-tone tuning |
KRAEH_22A.SCL | 46 | Kraehenbuehl & Schmidt 7-limit 22-tone tuning with "inflections" for some tones |
KRAEH_22B.SCL | 22 | Best 22-tET approximation of KRAEH_22A.SCL |
KRING1.SCL | 7 | Double-tie circular mirroring of 4:5:6 and Partch's 5-limit tonality Diamond |
KRING1P3.SCL | 35 | Third carthesian power of double-tie mirroring of 4:5:6 with kleismas removed |
KRING2.SCL | 7 | Double-tie circular mirroring of 6:7:8 |
KRING2P3.SCL | 25 | Third power of 6:7:8 mirroring with 1029/1024 intervals removed |
KRING3.SCL | 7 | Double-tie circular mirroring of 3:5:7 |
KRING4.SCL | 7 | Double-tie circular mirroring of 4:5:7 |
KRING4P3.SCL | 29 | Third power of 4:5:7 mirroring with 3136/3125 intervals removed |
KRING5.SCL | 7 | Double-tie circular mirroring of 5:7:9 |
KRING5P3.SCL | 33 | Third power of 5:7:9 mirroring with 250047/250000 intervals removed |
KRING6.SCL | 7 | Double-tie circular mirroring of 6:7:9 |
KRING6P3.SCL | 34 | Third power of 6:7:9 mirroring with 118098/117649 intervals removed |
KROUSSEAU.SCL | 12 | Kami Rousseau's tri-blues scale |
KROUSSEAU2.SCL | 12 | 19-tET version of Kami Rousseau's tri-blues scale |
KUKUYA.SCL | 4 | African Kukuya Horns (aerophone, ivory, one note only) |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
LAMBDOMA5_12.SCL | 42 | 5x12 Lambdoma |
LAMBDOMA_PRIM.SCL | 56 | Prime Lambdoma |
LAMBERT.SCL | 12 | Lambert's temperament (1774) 1/7 Pyth. comma, 5 pure |
LEBANON.SCL | 7 | Lebanese scale? |
LEFTPISTOL.SCL | 12 | Left Pistol |
LING-LUN.SCL | 12 | Scale of Ling Lun from C |
LIU_MAJOR.SCL | 7 | Linus Liu's Major Scale, see his 1978 book, "Intonation Theory" |
LIU_MEL.SCL | 9 | Linus Liu's Melodic Minor, use 5 and 7 descending and 6 and 8 ascending |
LIU_MINOR.SCL | 7 | Linus Liu's Harmonic Minor |
LIU_PENT.SCL | 7 | Linus Liu's "pentatonic scale" |
LORINA.SCL | 12 | Lorina |
LUCY.SCL | 21 | Charles Lucy's scale |
LUCYTUN.SCL | 31 | LucyTuning from A |
LUCY_19.SCL | 19 | Lucy's 19-tone scale |
LUCY_7.SCL | 7 | Diatonic Lucy's scale |
LYDIAN_CHROM.SCL | 24 | Lydian Chromatic Tonos |
LYDIAN_CHROM2.SCL | 7 | Schlesinger's Lydian Harmonia in the chromatic genus |
LYDIAN_CHROMINV.SCL | 7 | A harmonic form of Schlesinger's Chromatic Lydian inverted |
LYDIAN_DIAT.SCL | 24 | Lydian Diatonic Tonos |
LYDIAN_DIAT2.SCL | 8 | Schlesinger's Lydian Harmonia, a subharmonic series through 13 from 26 |
LYDIAN_DIATCON.SCL | 7 | A Lydian Diatonic with its own trite synemmenon replacing paramese |
LYDIAN_DIATINV.SCL | 8 | Inverted Schlesinger's Lydian Harmonia, a harmonic series from 13 from 26 |
LYDIAN_ENH.SCL | 24 | Lydian Enharmonic Tonos |
LYDIAN_ENH2.SCL | 7 | Schlesinger's Lydian Harmonia in the enharmonic genus |
LYDIAN_ENHINV.SCL | 7 | A harmonic form of Schlesinger's Enharmonic Lydian inverted |
LYDIAN_PENT.SCL | 7 | Schlesinger's Lydian Harmonia in the pentachromatic genus |
LYDIAN_PIS.SCL | 15 | The Diatonic Perfect Immutable System in the Lydian Tonos |
LYDIAN_TRI.SCL | 7 | Schlesinger's Lydian Harmonia in the first trichromatic genus |
LYDIAN_TRI2.SCL | 7 | Schlesinger's Lydian Harmonia in the second trichromatic genus |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
MAJOR_CLUS.SCL | 12 | Chalmers' Major Mode Cluster |
MAJOR_WING.SCL | 12 | Chalmers' Major Wing with 7 major and 6 minor triads |
MALCOLM.SCL | 12 | Malcolm's Monochord, also just C major in Yamaha synths (Wilkinson: Tuning In) |
MALCOLM2.SCL | 12 | Malcolm 2 |
MALCOLMS.SCL | 12 | Symmetrical version of Malcolm's Monochord and Albion scale |
MALCOLM_AP.SCL | 12 | Best approximations in mix of all ETs from 12-23 to Malcolm's Monochord |
MALCOLM_ME.SCL | 7 | Malcolm's Mid-East |
MAMBUTI.SCL | 8 | African Mambuti Flutes (aerophone; vertical wooden; one note each) |
MANDELBAUM5.SCL | 19 | Mandelbaum's 5-limit 19-tone scale |
MANDELBAUM7.SCL | 19 | Mandelbaum's 7-limit 19-tone scale |
MARIMBA1.SCL | 17 | Marimba of the Bakwese, SW Belgian Congo (Zaire). 1/1=140.5 Hz |
MARIMBA2.SCL | 17 | Marimba of the Bakubu, S. Belgian Congo (Zaire). 1/1=141.5 Hz |
MARIMBA3.SCL | 10 | Marimba from the Yakoma tribe, Zaire. 1/1=185.5 Hz |
MARION.SCL | 19 | scale with two different ET step sizes |
MARION1.SCL | 24 | Marion's 7-limit Scale # 1 |
MARION10.SCL | 25 | Marion's 7-limit Scale # 10 |
MARION15.SCL | 24 | Marion's 7-limit Scale # 15 |
MARION19.SCL | 25 | Marion's 7-limit Scale # 19 |
MARION26.SCL | 24 | Marion's 7-limit Scale # 26 |
MARPURG-1.SCL | 12 | Other temperament by Marpurg, 3 fifths 1/3 Pyth. comma flat |
MARPURG.SCL | 12 | Marpurg, Versuch ueber die musikalische Temperatur (1776), p. 153 |
MARPURG1.SCL | 12 | Marpurg 1 |
MARPURG2.SCL | 12 | Marpurg 2. Neue Methode (1790) |
MARPURG3.SCL | 12 | Marpurg 3 |
MARPURG4.SCL | 12 | Marpurg 4, also Yamaha Pure Minor |
MARSH.SCL | 12 | John Marsh's mean-tone temperament (1809) |
MARSH2.SCL | 12 | John Marsh's quasi-equal temperament (1840) |
MATRIX.SCL | 12 | matrix |
MBIRA_BANDA.SCL | 7 | Mubayiwa Bandambira's tuning of keys R2-R9 from Berliner: The soul of mbira. |
MBIRA_BANDA2.SCL | 21 | Mubayiwa Bandambira's Mbira DzaVadzimu tuning B1=114 Hz |
MBIRA_GONDO.SCL | 21 | John Gondo's Mbira DzaVadzimu tuning B1=122 Hz |
MBIRA_KUNAKA.SCL | 7 | John Kunaka's mbira tuning of keys R2-R9 |
MBIRA_KUNAKA2.SCL | 21 | John Kunaka's Mbira DzaVadzimu tuning B1=113 Hz |
MBIRA_MUDE.SCL | 21 | Hakurotwi Mude's Mbira DzaVadzimu tuning B1=132 Hz |
MBIRA_MUJURU.SCL | 21 | Ephat Mujuru's Mbira DzaVadzimu tuning, B1=106 Hz |
MBIRA_ZIMB.SCL | 7 | Shona mbira scale |
MBOKO_BOW.SCL | 2 | African Mboko Mouth Bow (chordophone, single string, plucked) |
MBOKO_ZITHER.SCL | 7 | African Mboko Zither (chordophone; idiochordic palm fibre, plucked) |
MCCLAIN.SCL | 12 | McClain's 12-tone scale, see page 119 of The Myth of Invariance |
MCCLAIN_18.SCL | 18 | McClain's 18-tone scale, see page 143 of The Myth of Invariance |
MCCLAIN_8.SCL | 8 | McClain's 8-tone scale, see page 51 of The Myth of Invariance |
MCLAREN_HARM.SCL | 11 | from "Wilson part 9," claimed to be Schlesingers Dorian Enharmonic. Prov. unkn |
MCLAREN_RATH1.SCL | 12 | McLaren Rat H1 |
MCLAREN_RATH2.SCL | 12 | McLaren Rat H2 |
MEAN10.SCL | 12 | 3/10-comma mean-tone scale |
MEAN11.SCL | 12 | 3/11-comma mean-tone scale |
MEAN13.SCL | 12 | 3/13-comma mean-tone scale |
MEAN14.SCL | 12 | 3/14-comma mean-tone scale (Giordano Riccati, 1762) |
MEAN14_15.SCL | 15 | 15 of 3/14-comma mean-tone scale |
MEAN14_19.SCL | 19 | 19 of 3/14-comma mean-tone scale |
MEAN14_7.SCL | 7 | Least squares appr. of 5L+2S to Ptolemy's Intense Diatonic scale |
MEAN16.SCL | 12 | 3/16-comma mean-tone scale |
MEAN17.SCL | 12 | 4/17-comma mean-tone scale, least square error of 5/4 and 3/2 |
MEAN17_17.SCL | 17 | 4/17-comma mean-tone scale with split C#/Db, D#/Eb, F#/Gb, G#/Ab and A#/Bb |
MEAN17_19.SCL | 19 | 4/17-comma mean-tone scale, least square error of 5/4 and 3/2 |
MEAN18.SCL | 12 | 5/18-comma mean-tone scale (Smith). Low beating minor triad |
MEAN29.SCL | 12 | 7/29-comma mean-tone scale, least square weights 3/2:4 5/4:1 6/5:1 |
MEAN2SEV.SCL | 12 | 2/7-comma mean-tone scale. Zarlino's temperament (1558). See also meaneb371 |
MEAN2SEV_15.SCL | 15 | 15 of 2/7-comma mean-tone scale |
MEAN2SEV_19.SCL | 19 | 19 of 2/7-comma mean-tone scale |
MEAN2SEV_31.SCL | 31 | 31 of 2/7-comma mean-tone scale |
MEAN9.SCL | 12 | 2/9-comma mean-tone scale |
MEAN94.SCL | 12 | 4/9-comma mean-tone scale |
MEAN9_15.SCL | 15 | 15 of 2/9-comma mean-tone scale |
MEAN9_19.SCL | 19 | 19 of 2/9-comma mean-tone scale |
MEAN9_31.SCL | 31 | 31 of 2/9-comma mean-tone scale |
MEANEB1071.SCL | 12 | Equal beating 7/4 = 3/2 same. |
MEANEB1071A.SCL | 12 | Equal beating 7/4 = 3/2 opposite. |
MEANEB341.SCL | 12 | Equal beating 6/5 = 5/4 same. Almost 4/15 Pyth. comma |
MEANEB371.SCL | 12 | Equal beating 6/5 = 3/2 same. Practically 2/7-comma (Zarlino) |
MEANEB371A.SCL | 12 | Equal beating 6/5 = 3/2 opposite. Almost 2/5-comma |
MEANEB381.SCL | 12 | Equal beating 6/5 = 8/5 same. Almost 1/7-comma |
MEANEB451.SCL | 12 | Equal beating 5/4 = 4/3 same. |
MEANEB471.SCL | 12 | Equal beating 5/4 = 3/2 same. Almost 5/17-comma |
MEANEB471A.SCL | 12 | Equal beating 5/4 = 3/2 opposite. Almost 1/5 Pyth. Gottfried Keller (1707) |
MEANEB472.SCL | 12 | Beating of 5/4 = twice 3/2 same. Almost 5/14-comma |
MEANEB472A.SCL | 12 | Beating of 5/4 = twice 3/2 opposite. Almost 3/17-comma |
MEANEB591.SCL | 12 | Equal beating 4/3 = 5/3 same. |
MEANEB732.SCL | 12 | Beating of 3/2 = twice 6/5 same. Almost 4/13-comma |
MEANEB732A.SCL | 12 | Beating of 3/2 = twice 6/5 opposite. Almost 1/3 Pyth. comma |
MEANEB742.SCL | 12 | Beating of 3/2 = twice 5/4 same. |
MEANEB742A.SCL | 12 | Beating of 3/2 = twice 5/4 opposite. Almost 3/13-comma, 3/14 Pyth. comma |
MEANEB781.SCL | 12 | Equal beating 3/2 = 8/5 same. |
MEANEB891.SCL | 12 | Equal beating 8/5 = 5/3 same. Almost 5/18-comma |
MEANFIFTH.SCL | 12 | 1/5-comma mean-tone scale |
MEANFIFTH2.SCL | 12 | 1/5-comma mean-tone by John Holden (1770) |
MEANFIFTHEB.SCL | 12 | "1/5-comma" meantone with equal beating fifths |
MEANFIFTH_19.SCL | 19 | 19 of 1/5-comma mean-tone scale |
MEANFIFTH_43.SCL | 43 | Complete 1/5-comma mean-tone scale |
MEANHAR2.SCL | 12 | 1/9-Harrison's comma mean-tone scale |
MEANHAR3.SCL | 12 | 1/11-Harrison's comma mean-tone scale |
MEANHARRIS.SCL | 12 | 1/10-Harrison's comma mean-tone scale |
MEANHSEV.SCL | 41 | Mean-tone scale with harmonic seventh |
MEANKLEIS.SCL | 12 | Mean-tone scale where the kleisma is made away |
MEANLST357_19.SCL | 19 | 19 of mean-tone scale, least square error in 3/2, 5/4 and 7/4 |
MEANPI.SCL | 12 | Pi-based meantone with Harrison's major third by Erv Wilson |
MEANPI2.SCL | 12 | Pi-based meantone by Erv Wilson analogous to 22-tET |
MEANPKLEIS.SCL | 12 | Positive mean-tone scale where the kleisma is made away |
MEANQUAR.SCL | 12 | 1/4-comma mean-tone scale. Pietro Aaron's temp. (1523). 6/5 beats twice 3/2 |
MEANQUAREB.SCL | 12 | "1/4-comma" meantone with equal beating fifths |
MEANQUAR_15.SCL | 15 | 1/4-comma mean-tone scale with split C#/Db, D#/Eb and G#/Ab |
MEANQUAR_16.SCL | 16 | 1/4-comma mean-tone scale with split C#/Db, D#/Eb, G#/Ab and A#/Bb |
MEANQUAR_17.SCL | 17 | 1/4-comma mean-tone scale with split C#/Db, D#/Eb, F#/Gb, G#/Ab and A#/Bb |
MEANQUAR_19.SCL | 19 | 19 of 1/4-comma mean-tone scale |
MEANQUAR_27.SCL | 27 | 27 of 1/4-comma mean-tone scale |
MEANQUAR_31.SCL | 31 | 31 of 1/4-comma mean-tone scale |
MEANSABAT.SCL | 12 | 1/9-schisma mean-tone scale Sa'bat-Garibaldi's |
MEANSABAT_53.SCL | 53 | 53-tone 1/9-schisma mean-tone scale |
MEANSCHIS.SCL | 12 | 1/8-schisma mean-tone scale Helmholtz |
MEANSCHIS7.SCL | 12 | 1/7-schisma mean-tone scale |
MEANSEPT.SCL | 12 | Mean-tone scale with septimal diminished fifth |
MEANSEPT2.SCL | 19 | Mean-tone scale with septimal neutral second |
MEANSEPT3.SCL | 41 | Mean-tone scale with septimal minor third |
MEANSEPT4.SCL | 41 | Mean-tone scale with septimal narrow fourth |
MEANSEPT5.SCL | 29 | Mean-tone scale with septimal diminished fifth |
MEANSEPT6.SCL | 41 | Mean-tone scale with septimal neutral second |
MEANSEV.SCL | 12 | 1/7-comma mean-tone scale |
MEANSEV_19.SCL | 19 | 19 of 1/7-comma mean-tone scale |
MEANSIX53.SCL | 12 | 1/6 of 53-tone comma mean-tone scale by William Hawkes (1808) |
MEANSIXTH.SCL | 12 | 1/6-comma mean-tone scale (tritonic temperament of Salinas) |
MEANSIXTHEB.SCL | 12 | "1/6-comma" meantone with equal beating fifths |
MEANSIXTH_19.SCL | 19 | 19 of 1/6-comma mean-tone scale |
MEANTHIRD.SCL | 12 | 1/3-comma mean-tone scale |
MEANTHIRD_19.SCL | 19 | Complete 1/3-comma mean-tone scale |
MEANVAR1.SCL | 12 | Variable meantone 1: C-G-D-A-E 1/4, others 1/6 |
MEANVAR2.SCL | 12 | Variable meantone 2: C..E 1/4, 1/5-1/6-1/7-1/8 outward both directions |
MEANVAR3.SCL | 12 | Variable meantone 3: C..E 1/4, 1/6 next, then Pyth. |
MEANVAR4.SCL | 12 | Variable meantone 4: naturals 1/4-comma, accidentals Pyth. |
MERCATOR.SCL | 19 | 19 out of 53-tET, see Mandelbaum p. 331 |
MERRICK.SCL | 12 | A. Merrick's melodically tuned equal temperament (1811) |
MERSEN-BAN.SCL | 18 | For keyboard designs of Mersenne (1636) & Ban (1639), 10 black and extra D |
MERSEN_L1.SCL | 12 | Mersenne lute 1 |
MERSEN_L2.SCL | 12 | Mersenne lute 2 |
MERSEN_S1.SCL | 12 | Mersenne spinet 1 |
MERSEN_S2.SCL | 12 | Mersenne spinet 2 |
METAL-BAR.SCL | 13 | Metal bar scale. see McLaren, Xenharmonicon 15, pp.31-33 |
METAMEAN.SCL | 12 | Erv Wilson's Meta-Meantone tuning |
MEYER.SCL | 19 | Max Meyer, see Doty, David, 1/1 August 1992 (7:4) p.1 and 10-14 |
MEYER_29.SCL | 29 | Max Meyer, see Doty, David, 1/1 August 1992 (7:4) p.1 and 10-14 |
MID_ENH1.SCL | 7 | Mid-Mode1 Enharmonic, permutation of Archytas's with the 5/4 lying medially |
MID_ENH2.SCL | 7 | Permutation of Archytas' Enharmonic with the 5/4 medially and 28/27 first |
MINOR_5.SCL | 5 | A minor pentatonic |
MINOR_CLUS.SCL | 12 | Chalmers' Minor Mode Cluster, Genus [333335] |
MINOR_WING.SCL | 12 | Chalmers' Minor Wing with 7 minor and 6 major triads |
MIRING1.SCL | 5 | Gamelan Miring from Serdang wetan, Tangerang. 1/1=309.5 Hz |
MIRING2.SCL | 5 | Gamelan Miring (Melog gender) from Serdang wetan |
MISCA.SCL | 9 | 21/20 x 20/19 x 19/18=7/6 7/6 x 8/7=4/3 |
MISCB.SCL | 9 | 33/32 x 32/31x 31/27=11/9 11/9 x 12/11=4/3 |
MISCC.SCL | 9 | 96/91 x 91/86 x 86/54=32/27. 32/27 x 9/8=4/3. |
MISCD.SCL | 9 | 27/26 x 26/25 x 25/24=9/8. 9/8 x 32/27=4/3. |
MISCE.SCL | 9 | 15/14 x 14/13 x 13/12=5/4. 5/4 x 16/15= 4/3. |
MISCF.SCL | 9 | SupraEnh1 |
MISCG.SCL | 9 | SupraEnh 2 |
MISCH.SCL | 9 | SupraEnh 3 |
MIXED9_3.SCL | 9 | A mixture of the hemiolic chromatic and diatonic genera, 75 + 75 + 150 + 200 c |
MIXED9_4.SCL | 9 | Mixed enneatonic 4, each "tetrachord" contains 67 + 67 + 133 + 233 cents. |
MIXED9_5.SCL | 9 | A mixture of the intense chromatic genus and the permuted intense diatonic |
MIXED9_6.SCL | 9 | Mixed 9-tonic 6, Mixture of Chromatic and Diatonic |
MIXED9_7.SCL | 9 | Mixed 9-tonic 7, Mixture of Chromatic and Diatonic |
MIXED9_8.SCL | 9 | Mixed 9-tonic 8, Mixture of Chromatic and Diatonic |
MIXOL_CHROM.SCL | 24 | Mixolydian chromatic tonos |
MIXOL_CHROM2.SCL | 7 | Schlesinger's Mixolydian Harmonia in the chromatic genus |
MIXOL_CHROMINV.SCL | 7 | A harmonic form of Schlesinger's Chromatic Mixolydian inverted |
MIXOL_DIAT.SCL | 24 | Mixolydian diatonic tonos |
MIXOL_DIAT2.SCL | 8 | Schlesinger's Mixolydian Harmonia, a subharmonic series though 13 from 28 |
MIXOL_DIATCON.SCL | 7 | A Mixolydian Diatonic with its own trite synemmenon replacing paramese |
MIXOL_DIATINV.SCL | 7 | A Mixolydian Diatonic with its own trite synemmenon replacing paramese |
MIXOL_DIATINV2.SCL | 8 | Inverted Schlesinger's Mixolydian Harmonia, a harmonic series from 14 from 28 |
MIXOL_ENH.SCL | 24 | Mixolydian enharmonic tonos |
MIXOL_ENH2.SCL | 7 | Schlesinger's Mixolydian Harmonia in the enharmonic genus |
MIXOL_ENHINV.SCL | 7 | A harmonic form of Schlesinger's Mixolydian inverted |
MIXOL_PENTA.SCL | 7 | Schlesinger's Mixolydian Harmonia in the pentachromatic genus |
MIXOL_PIS.SCL | 15 | The Diatonic Perfect Immutable System in the Mixolydian Tonos |
MIXOL_TRI1.SCL | 7 | Schlesinger's Mixolydian Harmonia in the first trichromatic genus |
MIXOL_TRI2.SCL | 7 | Schlesinger's Mixolydian Harmonia in the second trichromatic genus |
MOHAJIRA.SCL | 7 | Mohajira (Dudon) Two 3 + 4 + 3 Mohajira tetrachords, neutral diatonic |
MOHA_BAYA.SCL | 7 | Mohajira + Bayati (Dudon) 3 + 4 + 3 Mohajira and 3 + 3 + 4 Bayati tetrachords |
MOKHALIF.SCL | 7 | Iranian mode Mokhalif from C |
MONTFORD.SCL | 5 | Montford's Spondeion, a mixed septimal and undecimal pentatonic |
MONTVALLON.SCL | 12 | Montvallon |
MORGAN.SCL | 12 | Augustus de Morgan's temperament (1843) |
MOS11-34.SCL | 11 | Wilson 11 of 34-tET, G=9, Chain of minor & major thirds with Kleismatic fusion |
MOS12-17.SCL | 12 | MOS 12 of 17, generator 7 |
MOS12-22.SCL | 12 | MOS 12 of 22, contains nearly just, recognizable diatonic, and pentatonic scales |
MOS13-22.SCL | 13 | MOS 13 of 22, contains 5 and 9 tone MOS as well. G= 5 or 17 |
MOS15-22.SCL | 15 | MOS 15 in 22, contains 7 and 8 tone MOS as well. G= 3 or 19 |
MOSCOW.SCL | 12 | Charles E. Moscow's equal beating piano tuning (1895) |
MUSAQA.SCL | 7 | Egyptian scale by Miha'il Musaqa |
MUSAQA_24.SCL | 24 | from d'Erlanger vol.5, p.34, after Mih.a'il Mu^saqah, 1899, a Lebanese scholar |
MYSTIC-R.SCL | 5 | Skriabin's mystic chord, op. 60 rationalised |
MYSTIC.SCL | 5 | Skriabin's mystic chord, op. 60 |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
NEID-MAR-MORG.SCL | 12 | Neidhardt-Marpurg-de Morgan temperament (1858) |
NEIDHARDT1.SCL | 12 | Neidhardt I temperament (1724) |
NEIDHARDT2.SCL | 12 | Neidhardt II temperament (1724) |
NEIDHARDT3.SCL | 12 | Neidhardt III temperament (1724) |
NEIDHARDT4.SCL | 12 | Johann George Neidhardt's temperament no. 3 (1732). Altern. 1/6 P, 0 P |
NEUTR_DIAT.SCL | 7 | Neutral Diatonic, 9 + 9 + 12 parts |
NEUTR_PENT1.SCL | 5 | Quasi-Neutral Pentatonic 1, 15/13 x 52/45 in each trichord, after Dudon |
NEUTR_PENT2.SCL | 5 | Quasi-Neutral Pentatonic 2, 15/13 x 52/45 in each trichord, after Dudon |
NEW_DIATSOFT.SCL | 7 | New Soft Diatonic genus with equally divided Pyknon; Dorian Mode; 1:1 pyknon |
NEW_ENH.SCL | 7 | New Enharmonic |
NEW_ENH2.SCL | 7 | New Enharmonic P2 |
NOVARO.SCL | 23 | 9-limit diamond with 21/20, 16/15, 15/8 and 40/21 added for evenness |
NOVARO15.SCL | 49 | 1-15 diamond, see Novaro, 1927, Sistema Natural base del Natural-Aproximado, p |
NOVARO_EB.SCL | 12 | Novaro (?) equal beating 4/3 with strectched octave, almost pure 3/2 |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
OCTONY1.SCL | 8 | 1)8 octony from 1.3.5.7.9.11.13.15, 1.3 tonic |
OCTONY7.SCL | 8 | 7)8 octony from 1.3.5.7.9.11.13.15, 1.3.5.7.9.11.13 tonic |
OCTONY_MIN.SCL | 8 | Octony on Harmonic Minor, from Palmer on an album of Turkish music |
OCTONY_ROT.SCL | 8 | Rotated Octony on Harmonic Minor |
OCTONY_TRANS.SCL | 8 | Complex 10 of p. 115, an Octony based on Archytas's Enharmonic, |
OCTONY_TRANS2.SCL | 8 | Complex 6 of p. 115 based on Archytas's Enharmonic, an Octony |
OCTONY_TRANS3.SCL | 8 | Complex 5 of p. 115 based on Archytas's Enharmonic, an Octony |
OCTONY_TRANS4.SCL | 8 | Complex 11 of p. 115, an Octony based on Archytas's Enharmonic, 8 tones |
OCTONY_TRANS5.SCL | 8 | Complex 15 of p. 115, an Octony based on Archytas's Enharmonic, 8 tones |
OCTONY_TRANS6.SCL | 8 | Complex 14 of p. 115, an Octony based on Archytas's Enharmonic, 8 tones |
ODD1.SCL | 12 | ODD-1 |
ODD2.SCL | 12 | ODD-2 |
OETTINGEN.SCL | 53 | von Oettingen's Orthotonophonium tuning |
OETTINGEN2.SCL | 53 | von Oettingen's Orthotonophonium tuning with central 1/1 |
OLDANI.SCL | 12 | This scale by Norbert L. Oldani appeared in Interval 5(3), p.10-11 |
OLYMPOS.SCL | 5 | Scale of ancient Greek flutist Olympos, 6th century BC as reported by Partch |
OPELT.SCL | 19 | Opelt 19-tone |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
PALACE.SCL | 12 | Palace mode+ |
PARACHROM.SCL | 7 | Parachromatic, new genus 5 + 5 + 20 parts |
PAREJA.SCL | 12 | Ramis de Pareja |
PARTCH-GREEK.SCL | 12 | Partch Greek scales from "Two Studies on Ancient Greek Scales" on black/white |
PARTCH-UR.SCL | 39 | Ur-Partch curved keyboard, published in Interval |
PARTCH_29.SCL | 29 | Partch/Ptolemy 11-limit Diamond |
PARTCH_37.SCL | 37 | From "Exposition on Monophony" 1933, unp. see Ayers, 1/1 vol.9(2) |
PARTCH_39.SCL | 39 | Ur-Partch Keyboard 39 tones, published in Interval |
PARTCH_41.SCL | 41 | 13-limit Diamond after Partch, Genesis of a Music, p 454, 2nd edition |
PARTCH_41A.SCL | 41 | From "Exposition on Monophony" 1933, unp. see Ayers, 1/1 vol. 9(2) |
PARTCH_43.SCL | 43 | Harry Partch's 43-tone pure scale |
PARTCH_43A.SCL | 43 | From "Exposition on Monophony" 1933, unp. see Ayers, 1/1 vol. 9(2) |
PELOG.SCL | 7 | Observed Javanese Pelog scale |
PELOG1.SCL | 7 | Gamelan Saih pitu from Ksatria, Den Pasar (South Bali). 1/1=312.5 Hz |
PELOG2.SCL | 7 | Bamboo gambang from Batu lulan (South Bali). 1/1=315 Hz |
PELOG3.SCL | 5 | Gamelan Gong from Padangtegal, distr. Ubud (South Bali). 1/1=555 Hz |
PELOG4.SCL | 7 | Hindu-Jav. demung, excavated in Banjarnegara. 1/1=427 Hz |
PELOG5.SCL | 7 | Gamelan Kyahi Munggang (Paku Alaman, Jogja). 1/1=199.5 Hz |
PELOG6.SCL | 6 | Gamelan Semar pegulingan, Ubud (S. Bali). 1/1=263.5 Hz |
PELOG7.SCL | 7 | Gamelan Kantjilbelik (kraton Jogja). Measured by Surjodiningrat, 1972. |
PELOG8.SCL | 14 | from William Malm: Music Cultures of the Pacific, the Near East and Asia. |
PELOG_24.SCL | 7 | Subset of 24-tET (Sumatra?) |
PELOG_A.SCL | 7 | Pelog, average class A. Kunst 1949 |
PELOG_ALV.SCL | 7 | Bill Alves JI Pelog, 1/1 vol. 9 no. 4, 1997. 1/1=293.33 |
PELOG_AV.SCL | 7 | "Normalised Pelog", Kunst, 1949. Average of 39 Javanese gamelans |
PELOG_B.SCL | 7 | Pelog, average class B. Kunst 1949 |
PELOG_C.SCL | 7 | Pelog, average class C. Kunst 1949 |
PELOG_JC.SCL | 12 | Chalmers' Pelog/BH Slendro |
PELOG_ME1.SCL | 7 | Gamelan Kyahi Kanyut Mesem pelog (Mangku Nagaran). 1/1=295 Hz |
PELOG_ME2.SCL | 7 | Gamelan Kyahi Bermara (kraton Jogja). 1/1=290 Hz |
PELOG_ME3.SCL | 7 | Gamelan Kyahi Pangasih (kraton Solo). 1/1=286 Hz |
PELOG_PA.SCL | 7 | "Blown fifth" pelog, von Hornbostel, type a. |
PELOG_PA2.SCL | 7 | New mixed gender Pelog |
PELOG_PB.SCL | 7 | "Primitive" Pelog, step of blown semi-fourths, von Hornbostel, type b. |
PELOG_PB2.SCL | 7 | "Primitive" Pelog, Kunst: Music in Java, p. 28 |
PELOG_SCHMIDT.SCL | 7 | Modern Pelog designed by Dan Schmidt and used by Berkeley Gamelan |
PELOG_SELUN.SCL | 11 | Gamelan selunding from Kengetan, South Bali (Pelog), 1/1=141 Hz |
PELOG_STR.SCL | 9 | JI Pelog with stretched 2/1 and extra tones between 2-3, 6-7. Wolf, XH 11, '87 |
PENTA1.SCL | 12 | Pentagonal scale 9/8 3/2 16/15 4/3 5/3 |
PENTA3.SCL | 12 | Pentagonal scale 7/4 4/3 15/8 32/21 6/5 |
PENTADEKANY.SCL | 15 | 2)6 1.3.5.7.11.13 Pentadekany |
PENTADEKANY2.SCL | 15 | 2)6 1.3.5.7.9.11 Pentadekany (1.3 tonic) |
PENTATRIAD.SCL | 11 | 4:5:6 Pentatriadic scale |
PENTATRIAD1.SCL | 11 | 3:5:9 Pentatriadic scale |
PERRETT-TT.SCL | 19 | Perrett Tierce-Tone |
PERRETT.SCL | 7 | Perrett / Tartini / Pachymeres Enharmonic |
PERRETT_14.SCL | 14 | Perrett's 14-tone system (subscale of tierce-tone) |
PERRETT_CHROM.SCL | 7 | Perrett's Chromatic |
PERSIAN.SCL | 17 | Persian Tar Scale, from Dariush Anooshfar, Internet Tuning List 2/10/94 |
PHI1_13.SCL | 13 | Pythagorean scale with (Phi + 1) / 2 as fifth |
PHI_10.SCL | 10 | Pythagorean scale with Phi as fifth |
PHI_13.SCL | 13 | Pythagorean scale with Phi as fifth |
PHI_17.SCL | 17 | Phi + 1 equal division by 17. Brouncker, 1653 |
PHRYGIAN.SCL | 12 | Old Phrygian ?? |
PHRYGIAN_CHROM.SCL | 24 | Phrygian Chromatic Tonos |
PHRYGIAN_DIAT.SCL | 24 | Phrygian Diatonic Tonos |
PHRYGIAN_ENH.SCL | 12 | Phrygian Enharmonic Tonos |
PHRYGIAN_HARM.SCL | 12 | Phrygian Harmonia-Aliquot 24 (flute tuning) |
PHRYG_CHROMCON.SCL | 7 | Inverted Conjunct Chromatic Phrygian |
PHRYG_CHROMCON2.SCL | 7 | Harmonic Conjunct Chromatic Phrygian |
PHRYG_CHROMINV.SCL | 7 | Inverted Schlesinger's Chromatic Phrygian |
PHRYG_DIAT.SCL | 8 | Schlesinger's Phrygian Harmonia, a subharmonic series through 13 from 24 |
PHRYG_DIATCON.SCL | 7 | A Phrygian Diatonic with its own trite synemmenon replacing paramese |
PHRYG_DIATINV.SCL | 8 | Inverted Schlesinger's Phrygian Harmonia, a harmonic series from 12 from 24 |
PHRYG_ENH.SCL | 7 | Schlesinger's Phrygian Harmonia in the enharmonic genus |
PHRYG_ENHCON.SCL | 7 | Harmonic Conjunct Enharmonic Phrygian |
PHRYG_ENHINV.SCL | 7 | Inverted Schlesinger's Enharmonic Phrygian Harmonia |
PHRYG_ENHINV2.SCL | 7 | Inverted harmonic form of Schlesinger's Enharmonic Phrygian |
PHRYG_INV.SCL | 7 | Inverted Schlesinger's Chromatic Phrygian Harmonia |
PHRYG_INVCON.SCL | 7 | Inverted Conjunct Phrygian Harmonia with 17, the local Trite Synemmenon |
PHRYG_PENTA.SCL | 7 | Schlesinger's Phrygian Harmonia in the pentachromatic genus |
PHRYG_PIS.SCL | 15 | The Diatonic Perfect Immutable System in the Phrygian Tonos |
PHRYG_TRI1.SCL | 7 | Schlesinger's Phrygian Harmonia in the chromatic genus |
PHRYG_TRI2.SCL | 7 | Schlesinger's Phrygian Harmonia in the second trichromatic genus |
PHRYG_TRI3.SCL | 7 | Schlesinger's Phrygian Harmonia in the first trichromatic genus |
PIANO.SCL | 19 | Enhanced Piano Total Gamut, see 1/1 vol. 8/2 January 1994 |
PIANO7.SCL | 12 | Enhanced piano 7-limit |
PIERCE_9.SCL | 9 | Pierce's 9 of 3\13, see Mathews et al., J. Acoust. Soc. Am. 84, 1214-1222 |
PIPEDUM7_10.SCL | 10 | 225/224, 1029/1024 and 2048/2025 are homophonic intervals |
PIPEDUM7_10A.SCL | 10 | 225/224, 1029/1024 and 64/63 are homophonic intervals |
PIPEDUM7_10B.SCL | 10 | 225/224, 2048/2025 and 49/48 are homophonic intervals |
PIPEDUM7_10C.SCL | 10 | 225/224, 64/63 and 49/48 are homophonic intervals |
PIPEDUM7_10D.SCL | 10 | 1029/1024, 2048/2025 and 64/63 are homophonic intervals |
PIPEDUM7_10E.SCL | 10 | 2048/2025, 64/63 and 49/48 are homophonic intervals |
PIPEDUM7_12.SCL | 12 | 225/224, 64/63 and 36/35 are homophonic intervals |
PIPEDUM7_9.SCL | 9 | 225/224, 49/48 and 36/35 are homophonic intervals |
PIPEDUM_10.SCL | 10 | Scale with homophonic intervals 2048/2025 and 34171875/33554432 |
PIPEDUM_12.SCL | 12 | Scale with homophonic intervals 2048/2025 and 81/80, 5-limit |
PIPEDUM_12A.SCL | 12 | Scale with homophonic intervals 2048/2025 and 128/125 |
PIPEDUM_19.SCL | 19 | Scale with homophonic intervals 81/80 and 15625/15552, inverse of Mandelbaum |
PIPEDUM_19A.SCL | 19 | Scale with homophonic intervals 15625/15552 and 3125/3072 |
PIPEDUM_22.SCL | 22 | Scale with homophonic intervals 2109375/2097152 and 3125/3072 |
PIPEDUM_22A.SCL | 22 | Scale with homophonic intervals 2109375/2097152 and 2048/2025 |
PIPEDUM_31.SCL | 31 | Scale with homophonic intervals 81/80 225/224 1029/1024 |
PIPEDUM_31A.SCL | 31 | Scale with homophonic intervals 2109375/2097152 and 393216/390625 |
PIPEDUM_34.SCL | 34 | Scale with homophonic intervals 15625/15552 and 393216/390625 |
POLANSKY_PS.SCL | 50 | Three interlocking harmonic series on 1:5:3 by Larry Polansky in Psaltery |
POOLE.SCL | 7 | Poole's double diatonic or dichordal scale |
PORTBAG1.SCL | 7 | Portugese bagpipe tuning |
PORTBAG2.SCL | 10 | Portugese bagpipe tuning 2 |
PRELLEUR.SCL | 12 | Peter Prelleur's well temperament (1731) |
PRESTON.SCL | 12 | Preston's equal beating temperament (1785) |
PRESTON2.SCL | 12 | Preston's theoretically correct well temperament |
PRIME_5.SCL | 5 | What Lou Harrison calls "the Prime Pentatonic", a widely used scale |
PRINZ.SCL | 12 | Prinz well-tempermament (1808) |
PRINZ2.SCL | 12 | Prinz equal beating temperament (1808) |
PROD13-2.SCL | 21 | 13-limit binary products [1 3 5 7 11 13] |
PROD13.SCL | 27 | 13-limit binary products [1 3 5 7 9 11 13] |
PROD7D.SCL | 39 | Double Cubic Corner 7-limit. Chalmers '96 |
PROD7S.SCL | 20 | Single Cubic Corner 7-limit |
PRODQ13.SCL | 40 | 13-limit Binary products"ients. Chalmers '96 |
PROG_ENNEA.SCL | 9 | Progressive Enneatonic, 50+100+150+200 cents in each half (500 cents) |
PROG_ENNEA1.SCL | 9 | Progressive Enneatonic, appr. 50+100+150+200 cents in each half (500 cents) |
PROG_ENNEA2.SCL | 9 | Progressive Enneatonic, appr. 50+100+200+150 cents in each half (500 cents) |
PROG_ENNEA3.SCL | 9 | Progressive Enneatonic, appr. 50+100+150+200 cents in each half (500 cents) |
PS-DORIAN.SCL | 7 | Complex 4 of p. 115 based on Archytas's Enharmonic |
PS-ENH.SCL | 7 | Dorian mode of an Enharmonic genus found in Ptolemy's Harmonics |
PS-HYPOD.SCL | 7 | Complex 7 of p. 115 based on Archytas's Enharmonic |
PS-HYPOD2.SCL | 7 | Complex 8 of p. 115 based on Archytas's Enharmonic |
PS-MIXOL.SCL | 7 | Complex 3 of p. 115 based on Archytas's Enharmonic |
PTOLEMY.SCL | 7 | Intense Diatonic Systonon, also Zarlino's scale |
PTOLEMY_CHROM.SCL | 7 | Ptolemy Soft Chromatic |
PTOLEMY_DDIAT.SCL | 7 | Lyra tuning, Dorian mode, comb. of diatonon toniaion & diatonon ditoniaion |
PTOLEMY_DIAT.SCL | 7 | Ptolemy's Diatonon Ditoniaion & Archytas' Diatonic, also Lyra tuning |
PTOLEMY_DIAT2.SCL | 7 | Dorian mode of a permutation of Ptolemy's Tonic Diatonic |
PTOLEMY_DIAT3.SCL | 7 | Dorian mode of the remaining permutation of Ptolemy's Intense Diatonic |
PTOLEMY_DIAT4.SCL | 7 | permuted Ptolemy's diatonic |
PTOLEMY_DIAT5.SCL | 7 | Sterea lyra, Dorian, comb. of 2 Tonic Diatonic 4chords, also Archytas' diatonic |
PTOLEMY_DIFF.SCL | 7 | Difference tones of Intense Diatonic reduced by 2/1 |
PTOLEMY_ENH.SCL | 7 | Dorian mode of Ptolemy's Enharmonic |
PTOLEMY_HOM.SCL | 7 | Dorian mode of Ptolemy's Equable Diatonic or Diatonon Homalon |
PTOLEMY_IAST.SCL | 7 | Ptolemy's Iastia or Lydia tuning, mixture of Tonic Diatonic & Intense Diatonic |
PTOLEMY_IASTAIOL.SCL | 7 | Ptolemy's kithara tuning, mixture of Tonic Diatonic and Ditone Diatonic |
PTOLEMY_ICHROM.SCL | 7 | Dorian mode of Ptolemy's Intense Chromatic |
PTOLEMY_IDIAT.SCL | 7 | Dorian mode of Ptolemy's Intense Diatonic (Diatonon Syntonon) |
PTOLEMY_MALAK.SCL | 7 | Ptolemy's Malaka lyra tuning, a mixture of Intense Chrom. & Tonic Diatonic |
PTOLEMY_MALAK2.SCL | 7 | Malaka lyra, mixture of his Soft Chromatic and Tonic Diatonic. |
PTOLEMY_MALDIAT.SCL | 7 | Ptolemy soft diatonic |
PTOLEMY_MALDIAT2.SCL | 7 | permuted Ptolemy soft diatonic |
PTOLEMY_MALDIAT3.SCL | 7 | permuted Ptolemy soft diatonic |
PTOLEMY_META.SCL | 7 | Metabolika lyra tuning, mixture of Soft Diatonic & Tonic Diatonic |
PTOLEMY_MIX.SCL | 19 | All modes of Ptolemy Intense Diatonic mixed |
PTOLEMY_PROD.SCL | 21 | Product of Intense Diatonic with its intervals |
PTOLEMY_TREE.SCL | 14 | Intense Diatonic with all their Farey parent fractions |
PYGMIE.SCL | 5 | Pygmie scale |
PYRAMID.SCL | 12 | This scale may also be called the "Wedding Cake" |
PYRAMID_DOWN.SCL | 12 | Upside-Down Wedding Cake (divorce cake) |
PYTH_12.SCL | 12 | 12-tone Pythagorean scale |
PYTH_17.SCL | 17 | 17-tone Pythagorean scale |
PYTH_22.SCL | 22 | Pythagorean shrutis |
PYTH_27.SCL | 27 | 27-tone Pythagorean scale |
PYTH_31.SCL | 31 | 31-tone Pythagorean scale |
PYTH_CHROM.SCL | 8 | Dorian mode of the so-called Pythagorean chromatic, recorded by Gaudentius |
PYTH_SEV.SCL | 26 | 26-tone Pythagorean scale based on 7/4 |
PYTH_THIRD.SCL | 31 | Cycle of 5/4 thirds |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
QUASI_5.SCL | 5 | Quasi-Equal 5-Tone in 24-tET, 5 5 4 5 5 steps |
QUASI_9.SCL | 9 | Quasi-Equal Enneatonic, Each "tetrachord" has 125 + 125 + 125 + 125 cents |
QUINT_CHROM.SCL | 7 | Aristides Quintilianus' Chromatic genus |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
RAMEAU-FLAT.SCL | 12 | Rameau bemols, see Pierre-Yves Asselin in "Musique et temperament" |
RAMEAU-MINOR.SCL | 9 | Rameau's systeme diatonique mineur on E. Asc. 4-6-8-9, desc. 9-7-5-4 |
RAMEAU-NOUV.SCL | 12 | Temperament by Rameau in Nouveau Systeme (1726) |
RAMEAU-SHARP.SCL | 12 | Rameau dieses, see Pierre-Yves Asselin in "Musique et temperament" |
RAMEAU.SCL | 12 | Rameau scale (1725) |
RAMIS.SCL | 12 | Ramis's Monochord |
RAST_MOHA.SCL | 7 | Rast + Mohajira (Dudon) 4 + 3 + 3 Rast and 3 + 4 + 3 Mohajira tetrachords |
RAT_DORENH.SCL | 7 | Rationalized Schlesinger's Dorian Harmonia in the enharmonic genus |
RAT_HYPODENH.SCL | 7 | 1+1 rationalized enharmonic genus derived from K.S.'s 'Bastard' Hypodorian |
RAT_HYPODENH2.SCL | 7 | 1+2 rationalized enharmonic genus derived from K.S.'s 'Bastard' Hypodorian |
RAT_HYPODENH3.SCL | 7 | 1+3 rationalized enharmonic genus derived from K.S.'s 'Bastard' Hypodorian |
RAT_HYPODHEX.SCL | 7 | 1+1 rationalized hexachromatic/hexenharmonic genus derived from K.S.'Bastard' |
RAT_HYPODHEX2.SCL | 7 | 1+2 rat. hexachromatic/hexenharmonic genus derived from K.S.'s 'Bastard' Hypodo |
RAT_HYPODHEX3.SCL | 7 | 1+3 rat. hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' Hypodorian |
RAT_HYPODHEX4.SCL | 7 | 1+4 rat. hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' Hypodorian |
RAT_HYPODHEX5.SCL | 7 | 1+5 rat. hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' Hypodorian |
RAT_HYPODHEX6.SCL | 7 | 2+3 rationalized hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' hypod |
RAT_HYPODPEN.SCL | 7 | 1+1 rationalized pentachromatic/pentenharmonic genus derived from K.S.'s 'Bastar |
RAT_HYPODPEN2.SCL | 7 | 1+2 rationalized pentachromatic/pentenharmonic genus from K.S.'s 'Bastard' hyp |
RAT_HYPODPEN3.SCL | 7 | 1+3 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian |
RAT_HYPODPEN4.SCL | 7 | 1+4 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian |
RAT_HYPODPEN5.SCL | 7 | 2+3 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian |
RAT_HYPODPEN6.SCL | 7 | 2+3 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian |
RAT_HYPODTRI.SCL | 7 | rationalized first (1+1) trichromatic genus derived from K.S.'s 'Bastard' hyp |
RAT_HYPODTRI2.SCL | 7 | rationalized second (1+2) trichromatic genus derived from K.S.'s 'Bastard' hyp |
RAT_HYPOLENH.SCL | 8 | Rationalized Schlesinger's Hypolydian Harmonia in the enharmonic genus |
RAT_HYPOPCHROM.SCL | 7 | Rationalized Schlesinger's Hypophrygian Harmonia in the chromatic genus |
RAT_HYPOPENH.SCL | 7 | Rationalized Schlesinger's Hypophrygian Harmonia in the enharmonic genus |
RAT_HYPOPPEN.SCL | 7 | Rationalized Schlesinger's Hypophrygian Harmonia in the pentachromatic genus |
RAT_HYPOPTRI.SCL | 7 | Rationalized Schlesinger's Hypophrygian Harmonia in first trichromatic genus |
RAT_HYPOPTRI2.SCL | 7 | Rationalized Schlesinger's Hypophrygian Harmonia in second trichromatic genus |
REDFIELD.SCL | 7 | Redfield New Diatonic |
REINHARD-M.SCL | 12 | Mayumi Reinhard's Harmonic-13 scale. 1/1=440Hz. |
REINHARD.SCL | 12 | Reinhard 19-limit superparticular |
RENTENG1.SCL | 5 | Gamelan Renteng from Chileunyi (Tg. Sari). 1/1=330 Hz |
RENTENG2.SCL | 5 | Gamelan Renteng from Chikebo (Tg. Sari). 1/1=360 Hz |
RENTENG3.SCL | 6 | Gamelan Renteng from Lebakwangi (Pameungpeuk). 1/1=377 Hz |
RENTENG4.SCL | 5 | Gamelan Renteng Bale` bandung from Kanoman (Cheribon). 1/1=338 Hz |
ROBOT.SCL | 12 | Dead Robot (see lattice) |
ROBOT_LIVE.SCL | 12 | Live Robot |
ROMIEU.SCL | 12 | Romieu |
ROMIEU_INV.SCL | 12 | Romieu inverted, Pure (just) C minor in Wilkinson: Tuning In |
ROUANET.SCL | 5 | Islamic Genus (DF#7), from Rouanet |
ROUSSEAU.SCL | 12 | Rousseau |
ROUSSEAUW.SCL | 12 | Jean-Jacques Rousseau's temperament (1768) |
RVF1.SCL | 19 | RVF-1: D-A 695 cents, the increment is 0.25 cents, interval range 49.5 to 75.5 |
RVF2.SCL | 19 | RVF-2: 695 cents, 0.607 cents, 31-90 cents, C-A# is 7/4. |
RVF3.SCL | 19 | RVF-3: 694.737, 0.082, 25-97, the fifth E#-B# is 3/2. |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
SAFI_DIAT.SCL | 7 | Safi al-Din's Diatonic, also the strong form of Avicenna's 8/7 diatonic |
SAFI_DIAT2.SCL | 7 | Safi al-Din's 2nd Diatonic, a 3/4 tone diatonic like Ptolemy's Equable Diatonic |
SAFI_MAJOR.SCL | 6 | Singular Major (DF #6), from Safi al-Din, strong 32/27 chromatic |
SALINAS_ENH.SCL | 7 | Salinas's and Euler's enharmonic |
SALUNDING.SCL | 5 | Gamelan slunding, Kengetan, South-Bali. 1/1=378 Hz |
SANKEY.SCL | 12 | John Sankey's Scarlatti tuning, personal evaluation based on d'Alembert's |
SANZA.SCL | 8 | African N'Gundi Sanza (idiophone; set of lamellas, thumb-plucked) |
SAUVEUR.SCL | 12 | Sauveur's tempered system of the harpsichord. Traite', 1697 |
SAUVEUR2.SCL | 12 | Sauveur's Syste^me Chromatique des Musiciens (Memoires 1701), 12 out of 55. |
SAUVEUR_17.SCL | 17 | Sauveur's oriental system, aft. Kitab al-adwar (Bagdad 1294) by Safi al-Din |
SAUVEUR_JI.SCL | 12 | Aplication des sons harmoniques aux jeux d'orgues, 1702 (pip 81/80 & 128/125) |
SAVAS_BARDIAT.SCL | 7 | Savas's Byzantine Liturgical mode, 8 + 12 + 10 parts |
SAVAS_BARENH.SCL | 7 | Savas's Byzantine Liturgical mode, 8 + 16 + 6 parts |
SAVAS_CHROM.SCL | 7 | Savas's Chromatic, Byzantine Liturgical mode, 8 + 14 + 8 parts |
SAVAS_DIAT.SCL | 7 | Savas's Diatonic, Byzantine Liturgical mode, 10 + 8 + 12 parts |
SAVAS_PALACE.SCL | 7 | Savas's Byzantine Liturgical mode, 6 + 20 + 4 parts |
SCALATRON.SCL | 19 | Scalatron (tm) 19-tone scale, see manual, 1974 |
SCHIDLOF.SCL | 21 | Schidlof |
SCHISMIC.SCL | 12 | Scale with major thirds flat by a schisma |
SCHOLZ.SCL | 8 | Simple Tune #1 Carter Scholz |
SCOTBAG.SCL | 7 | Scottish bagpipe tuning |
SCOTBAG2.SCL | 7 | Scottish bagpipe tuning 2 |
SCOTBAG3.SCL | 7 | Scottish bagpipe tuning 3 |
SCOTBAG4.SCL | 7 | Scottish Bagpipe Ellis/Land |
SECOR.SCL | 17 | George Secor's well temperament with 5 pure 11/7 and 3 near just 11/6 |
SEGAH.SCL | 7 | Arabic SEGAH (Dudon) Two 4 + 3 + 3 tetrachords |
SEGAH2.SCL | 7 | Iranian mode Segah from C |
SEGAH_RAT.SCL | 7 | Rationalized Arabic SEGAH |
SEIKILOS.SCL | 12 | Seikilos Tuning |
SEKATI1.SCL | 7 | Gamelan sekati from Sumenep, East-Madura. 1/1=244 Hz. |
SEKATI2.SCL | 7 | Gamelan Kyahi Sepuh from kraton Solo. 1/1=216 Hz. |
SEKATI3.SCL | 7 | Gamelan Kyahi Henem from kraton Solo. 1/1=168.5 Hz. |
SEKATI4.SCL | 7 | Gamelan Kyahi Guntur madu from kraton Jogya. 1/1=201.5 Hz. |
SEKATI5.SCL | 7 | Gamelan Kyahi Naga Ilaga from kraton Jogya. 1/1=218.5 Hz. |
SEKATI6.SCL | 7 | Gamelan Kyahi Munggang from Paku Alaman, Jogya. 1/1=199.5 Hz. |
SEKATI7.SCL | 7 | Gamelan of Sultan Anom from Cheribon. 1/1=282 Hz. |
SEKATI8.SCL | 7 | The old Sultans-gamelan Kyahi Suka rame from Banten. 1/1=262.5 Hz. |
SEKATI9.SCL | 7 | Gamelan Sekati from Katjerbonan, Cheribon. 1/1=292 Hz. |
SELISIR.SCL | 5 | Gamelan semara pagulingan, Bali. Pagan Kelod |
SELISIR2.SCL | 5 | Gamelan semara pagulingan, Bali. Kamasan |
SERRE_ENH.SCL | 7 | Dorian mode of the Serre's Enharmonic |
SEV-ELEV.SCL | 12 | "Seven-Eleven Blues" of Pitch Palette |
SHALFUN.SCL | 24 | d'Erlanger vol.5, p.40. After Alexandre ^Salfun (Chalfoun) |
SHARM1C-CONM.SCL | 7 | Subharm1C-ConMixolydian |
SHARM1C-CONP.SCL | 7 | Subharm1C-ConPhryg |
SHARM1C-DOR.SCL | 8 | Subharm1C-Dorian |
SHARM1C-LYD.SCL | 8 | Subharm1C-Lydian |
SHARM1C-MIX.SCL | 7 | Subharm1C-Mixolydian |
SHARM1C-PHR.SCL | 7 | Subharm1C-Phrygian |
SHARM1E-CONM.SCL | 7 | Subharm1E-ConMixolydian |
SHARM1E-CONP.SCL | 7 | Subharm1E-ConPhrygian |
SHARM1E-DOR.SCL | 8 | Subharm1E-Dorian |
SHARM1E-LYD.SCL | 8 | Subharm1E-Lydian |
SHARM1E-MIX.SCL | 7 | Subharm1E-Mixolydian |
SHARM1E-PHR.SCL | 7 | Subharm1E-Phrygian |
SHARM2C-15.SCL | 7 | Subharm2C-15-Harmonia |
SHARM2C-HYPOD.SCL | 8 | SHarm2C-Hypodorian |
SHARM2C-HYPOL.SCL | 8 | SHarm2C-Hypolydian |
SHARM2C-HYPOP.SCL | 8 | SHarm2C-Hypophrygian |
SHARM2E-15.SCL | 7 | Subharm2E-15-Harmonia |
SHARM2E-HYPOD.SCL | 8 | SHarm2E-Hypodorian |
SHARM2E-HYPOL.SCL | 8 | SHarm2E-Hypolydian |
SHARM2E-HYPOP.SCL | 8 | SHarm2E-Hypophrygian |
SHENG.SCL | 12 | Sheng scale on naturals starting on d, from Fortuna |
SHERWOOD.SCL | 12 | Sherwood's improved meantone temperament |
SIAMESE.SCL | 12 | Siamese Tuning, after Clem Fortuna's Microtonal Guide |
SILVER.SCL | 12 | Equal beating chromatic scale, A.L.Leigh Silver JASA 29/4, 476-481, 1957 |
SILVER11.SCL | 11 | Eleven-Tone MOS from 1+ sqr(2), 1525.864 cents |
SILVER7.SCL | 7 | Seven-Tone MOS from 1+ sqr(2), 1525.864 cents. |
SILVERMEAN.SCL | 7 | First 6 approximants to the Silver Mean, 1+ sqr(2) reduced by 2/1 |
SIMONTON.SCL | 12 | Simonton Integral Ratio Scale, see JASA: A new integral ratio scale |
SIMS.SCL | 18 | Ezra Sims' 18-tone mode |
SIMS2.SCL | 20 | Sims II |
SIMS_24.SCL | 24 | See his article, Reflections on This and That, 1991 p.93-106 |
SIN.SCL | 21 | 1/sin(2pi/n), n=4..25 |
SINEMOD12.SCL | 19 | Sine modulated F=12, A=-.08203754 |
SINEMOD8.SCL | 19 | Sine modulated F=8, A=.11364155. Deviation minimal3/2, 4/3, 5/4, 6/5, 5/3, 8/5 |
SINGAPORE.SCL | 7 | An observed xylophone tuning from Singapore |
SINGAPORE2.SCL | 7 | An observed balafon tuning from Singapore |
SINTEMP6.SCL | 12 | Sine modulated fifths, A=1/6 Pyth, one cycle, f0=-90 degrees |
SINTEMP_19.SCL | 19 | Sine modulated thirds, A=7.366 cents, one cycle over fifths, f0=90 degrees |
SINTEMP_7.SCL | 7 | Sine modulated fifths, A=8.12 cents, one cycle, f0=90 degrees |
SLENDRO.SCL | 5 | Observed Javanese Slendro scale |
SLENDRO2.SCL | 5 | Gamelan slendro from Ranchaiyuh, distr. Tanggerang, Batavia. 1/1=282.5 Hz |
SLENDRO3.SCL | 5 | Gamelan kodok ngorek. 1/1=270 Hz |
SLENDRO4.SCL | 5 | Low gender from Kuta, Bali. 1/1=183 Hz |
SLENDRO5_1.SCL | 5 | A slendro type pentatonic which is based on intervals of 7; from Lou Harrison |
SLENDRO5_2.SCL | 5 | A slendro type pentatonic which is based on intervals of 7, no. 2 |
SLENDRO5_4.SCL | 5 | A slendro type pentatonic which is based on intervals of 7, no. 4 |
SLENDROB1.SCL | 5 | Gamelan miring of Musadikrama, desa Katur, Bajanegara. 1/1=434 Hz |
SLENDROB2.SCL | 5 | Gamelan miring from Bajanegara. 1/1=262 Hz |
SLENDROB3.SCL | 5 | Gamelan miring from Ngumpak, Bajanegara. 1/1=266 Hz |
SLENDROC1.SCL | 5 | Kyahi Kanyut mesem slendro (Mangku Nagaran Solo). 1/1=291 Hz |
SLENDROC2.SCL | 5 | Kyahi Pengawe sari (Paku Alaman, Jogja). 1/1=295 Hz. |
SLENDROC3.SCL | 5 | Gamelan slendro of R.M. Jayadipura, Jogja. 1/1=231 Hz |
SLENDROC4.SCL | 5 | Gamelan slendro, Rancha iyuh, Tanggerang, Batavia. 1/1=282.5 Hz |
SLENDROC5.SCL | 5 | Gender wayang from Pliatan, South Bali. 1/1=611 Hz |
SLENDROC6.SCL | 10 | from William Malm: Music Cultures of the Pacific, the Near East and Asia. |
SLENDROD1.SCL | 5 | Gender wayang from Ubud (S. Bali). 1/1=347 Hz |
SLENDRO_7_1.SCL | 5 | Septimal Slendro 1, From HMSL Manual, also Lou Harrison, Jacques Dudon |
SLENDRO_7_2.SCL | 5 | Septimal Slendro 2, From Lou Harrison, Jacques Dudon's APTOS |
SLENDRO_7_3.SCL | 5 | Septimal Slendro 3, Harrison, Dudon, called "MILLS" after Mills Gamelan |
SLENDRO_7_4.SCL | 5 | Septimal Slendro 4, from Lou Harrison, Jacques Dudon, called "NAT" |
SLENDRO_7_5.SCL | 5 | Septimal Slendro 5, from Jacques Dudon |
SLENDRO_A1.SCL | 5 | Dudon's Slendro A1, "Seven-Limit Slendro Mutations", 1/1 8:2'94 hexany 1.3.7.21 |
SLENDRO_A2.SCL | 5 | Dudon's Slendro A2 from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994 |
SLENDRO_ALV.SCL | 5 | Bill Alves, slendro for Gender Barung, 1/1 vol.9 no.4, 1997. 1/1=282.86 |
SLENDRO_ANG.SCL | 5 | Gamelan Angklung Sangsit, North Bali. 1/1=294 Hz |
SLENDRO_GUM.SCL | 5 | Gumbeng, bamboo idiochord from Banyumas. 1/1=440 Hz |
SLENDRO_KY1.SCL | 5 | Kyahi Kanyut Me`sem slendro, Mangku Nagaran, Solo. 1/1=291 Hz |
SLENDRO_KY2.SCL | 5 | Kyahi Pengawe' sari, Paku Alaman, Jogya. 1/1=295 Hz |
SLENDRO_M.SCL | 5 | Dudon's Slendro M from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994 |
SLENDRO_MAT.SCL | 12 | Dudon's Slendro Matrix from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994 |
SLENDRO_PA.SCL | 5 | "Blown fifth" primitive slendro, von Hornbostel |
SLENDRO_PB.SCL | 5 | "Blown fifth" medium slendro, von Hornbostel |
SLENDRO_PC.SCL | 5 | "Blown fifth" modern slendro, von Hornbostel |
SLENDRO_PLIAT.SCL | 9 | Gender wayang from Pliatan, South Bali (Slendro), 1/1=305.5 Hz |
SLENDRO_S1.SCL | 5 | Dudon's Slendro S1 from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994 |
SLENDRO_S2.SCL | 5 | Dudon's Slendro S2 |
SLENDRO_UDAN.SCL | 5 | Slendro Udan Mas (approx) |
SLENDRO_WOLF.SCL | 5 | Daniel Wolf's slendro. Tuning List 30 5 1997 |
SLEN_PEL.SCL | 12 | Pelog white, Slendro black |
SLEN_PEL16.SCL | 12 | 16-tET Slendro and Pelog |
SLEN_PEL23.SCL | 12 | 23-tET Slendro and Pelog |
SLEN_PEL_JC.SCL | 12 | Slendro/JC PELOG S1c,P1c#,S2d,eb,P2e,S3f,P3f#,S4g,ab,P4a,S5bb,P5b |
SLEN_PEL_SCHMIDT.SCL | 12 | Dan Schmidt (Pelog white, Slendro black) |
SMITH.SCL | 12 | Robert Smith's Equal Harmony temperament (1749) |
SMITH2.SCL | 19 | Roger K. Smith, "Multitonic" scale, just version |
SMITH2_19.SCL | 19 | 19 out of 612-tET by Roger K. Smith, 1978 |
SMITH_MQ.SCL | 12 | Robert Smith approximation of quarter comma meantone fifth |
SOFTDIAT.SCL | 7 | New Soft Diatonic genus with equally divided Pyknon; Dorian Mode; 1:1 pyknon |
SOLEMN.SCL | 6 | Solemn 6 |
SONGLINES.SCL | 12 | Songlines.DEM, Bill Thibault and Scott Gresham-Lancaster. 1992 ICMC |
SORGE1.SCL | 12 | Georg Andreas Sorge, 1744 (A) |
SORGE2.SCL | 12 | Georg Andreas Sorge, 1744 (B) |
SORGE3.SCL | 12 | Georg Andreas Sorge, 1758 |
SPEC1_14.SCL | 12 | Spectrum of 8/7: 1 to 27 reduced by 2/1 |
SPEC1_17.SCL | 12 | Spectrum of 7/6: 1 to 27 reduced by 2/1 |
SPEC1_25.SCL | 12 | Spectrum of 5/4: 1 to 25 reduced by 2/1 |
SPEC1_33.SCL | 12 | Spectrum of 4/3: 1 to 29 reduced by 2/1 |
SPEC1_4.SCL | 12 | Spectrum of 7/5: 1 to 25 reduced by 2/1 |
SPEC1_5.SCL | 12 | Spectrum of 1.5: 1 to 27 reduced by 2/1 |
SPECR2.SCL | 12 | Spectrum of sqrt(2): 1 to 29 reduced by 2/1 |
SPECR3.SCL | 12 | Spectrum of sqrt(3): 1 to 31 reduced by 2/1 |
SPONDEION.SCL | 6 | Subharmonic six-tone series, guess at Greek poet Terpander's, 6th c. BC |
SPOORWEGEN1.SCL | 16 | NS teken |
SPOORWEGEN2.SCL | 20 | NS teken |
STANHOPE.SCL | 12 | Well temperament of Charles, third earl of Stanhope, 1806 |
STELDEK1.SCL | 30 | Stellated two out of 1 3 5 7 9 dekany |
STELEIKO.SCL | 70 | Stellated Eikosany 3 out of 1 3 5 7 9 11 |
STELHEX1.SCL | 14 | Stellated two out of 1 3 5 7 hexany, also dekatesserany, mandala, tetradekany |
STELHEX2.SCL | 12 | Stellated two out of 1 3 5 9 hexany |
STELHEX3.SCL | 14 | Stellated Tetrachordal Hexany based on Archytas's Enharmonic |
STELHEX4.SCL | 14 | Stellated Tetrachordal Hexany based on the 1/1 35/36 16/15 4/3 tetrachord |
STELHEX5.SCL | 12 | Stellated two out of 1 3 7 9 hexany, stellation is degenerate |
STELHEX6.SCL | 14 | Stellated two out of 1 3 5 11 hexany, from The Giving, by Stephen J. Taylor |
STOCKHAUSEN.SCL | 25 | Stockhausen's 25-note ET scale |
STONE.SCL | 16 | Tom Stone's Guitar Scale |
STOPPER.SCL | 19 | Bernard Stopper, piano tuning with 19th root of 3 (1988) |
SUB24-12.SCL | 12 | Subharmonics 24-12 |
SUB24.SCL | 24 | Subharmonics 24-1 |
SUB40.SCL | 12 | sub 40-20 |
SUB48.SCL | 12 | 12 of sub 48 (Leven) |
SUB50.SCL | 12 | 12 of sub 50 |
SUB8.SCL | 8 | Subharmonic series 1/16 - 1/8 |
SUMATRA.SCL | 9 | "Archeological" tuning of Pasirah Rus orch. in Muaralakitan, Sumatra. 1/1=354 Hz |
SUPER_10.SCL | 10 | Most equal superparticular 10-tone scale |
SUPER_11.SCL | 11 | Most equal superparticular 11-tone scale |
SUPER_12.SCL | 12 | Most equal superparticular 12-tone scale |
SUPER_12_1.SCL | 12 | One but most equal superparticular 12-tone scale |
SUPER_12_2.SCL | 12 | Two but most equal superparticular 12-tone scale |
SUPER_13.SCL | 13 | Most equal superparticular 13-tone scale |
SUPER_14.SCL | 14 | Most equal superparticular 14-tone scale |
SUPER_15.SCL | 15 | Most equal superparticular 15-tone scale |
SUPER_17.SCL | 17 | Superparticular 17-tone scale |
SUPER_19.SCL | 19 | Superparticular 19-tone scale |
SUPER_19_1.SCL | 19 | Superparticular 19-tone scale |
SUPER_19_2.SCL | 19 | Superparticular 19-tone scale |
SUPER_22.SCL | 22 | Superparticular 22-tone scale |
SUPER_22_1.SCL | 22 | Superparticular 22-tone scale |
SUPER_24.SCL | 24 | Superparticular 24-tone scale, inverse of Mans.ur 'Awad |
SUPER_6.SCL | 6 | Most equal superparticular 6-tone scale |
SUPER_7.SCL | 7 | Most equal superparticular 7-tone scale |
SUPER_8.SCL | 8 | Most equal superparticular 8 tone scale |
SUPER_9.SCL | 9 | Most equal superparticular 9-tone scale |
SUPPIG.SCL | 19 | Friedrich Suppig's 19-tone JI scale. Calculus Musicus, Berlin 1722 |
SUR_9.SCL | 9 | Theoretical nine-tone surupan gamut |
SUR_AJENG.SCL | 5 | Surupan ajeng |
SUR_DEGUNG.SCL | 5 | Surupan degung |
SUR_MADENDA.SCL | 5 | Surupan madenda |
SUR_MELOG.SCL | 5 | Surupan melog |
SUR_MIRING.SCL | 5 | Surupan miring |
SUR_X.SCL | 5 | Surupan tone-gender X (= unmodified nyorog) |
SUR_Y.SCL | 5 | Surupan tone-gender Y (= mode on pamiring) |
SVERIGE.SCL | 24 | Scale on Swedish 50 crown banknote of some kind of violin. |
SYNTONOLYDIAN.SCL | 7 | Greek Syntonolydian, also genus duplicatum medium, or ditonum (Al-Farabi) |
SYRIAN.SCL | 30 | After ^Sayh.'Ali ad-Darwis^ (Shaykh Darvish) from d'Erlanger vol.5, p.29 |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
T-SIDE.SCL | 12 | Tau-on-Side |
TANBUR.SCL | 12 | Sub-40 tanbur scale |
TANSUR.SCL | 12 | William Tans'ur temperament from A New Musical Grammar (1746) p. 73 |
TAYLOR.SCL | 12 | Gregory Taylor's Dutch train ride scale based on pelog_schmidt |
TEMES-MIX.SCL | 9 | Temes' 5-tone Phi scale mixed with its octave inverse |
TEMES-UR.SCL | 5 | Temes' Ur 5-tone phi scale |
TEMES.SCL | 10 | Temes' 5-tone Phi scale / 2 cycle |
TEMES2-MIX.SCL | 18 | Temes' 2 cycle Phi scale mixed with its 4/1 inverse |
TEMP10EBSS.SCL | 10 | Cycle of 10 equal "beating" 15/14's |
TEMP11EBST.SCL | 11 | Cycle of 11 equal beating 9/7's |
TEMP12EBFO.SCL | 12 | Equal beating fifths and fifth beats twice octave at C |
TEMP12EP.SCL | 12 | Pythagorean comma distributed equally over octave and fifth: 1/19-Pyth comma |
TEMP12FO2.SCL | 12 | Fifth beats twice octave |
TEMP12P6.SCL | 12 | Modified 1/6-Pyth. comma temperament |
TEMP12W2B.SCL | 12 | The fifths on white keys beat twice the amount of fifths on black keys |
TEMP15EBSI.SCL | 15 | Cycle of 15 equal beating major sixths |
TEMP16D3.SCL | 16 | Cycle of 16 thirds tempered by 1/3 small diesis |
TEMP16D4.SCL | 16 | Cycle of 16 thirds tempered by 1/4 small diesis |
TEMP16EBS.SCL | 16 | Cycle of 16 equal beating sevenths |
TEMP16EBT.SCL | 16 | Cycle of 16 equal beating thirds |
TEMP16L4.SCL | 16 | Cycle of 16 fifths tempered by 1/4 major limma |
TEMP17C10.SCL | 17 | Cycle of 17 fifths tempered by 1/10 of "17-tET comma" |
TEMP17C11.SCL | 17 | Cycle of 17 fifths tempered by 1/11 of "17-tET comma" |
TEMP17C12.SCL | 17 | Cycle of 17 fifths tempered by 1/12 of "17-tET comma" |
TEMP17C13.SCL | 17 | Cycle of 17 fifths tempered by 1/13 of "17-tET comma" |
TEMP17C14.SCL | 17 | Cycle of 17 fifths tempered by 1/14 of "17-tET comma" |
TEMP17C15.SCL | 17 | Cycle of 17 fifths tempered by 1/15 of "17-tET comma" |
TEMP17EBF.SCL | 17 | Cycle of 17 equal beating fifths |
TEMP17EBS.SCL | 17 | Cycle of 17 equal beating sevenths |
TEMP17FO2.SCL | 17 | Fifth beats twice octave |
TEMP19D5.SCL | 19 | Cycle of 19 thirds tempered by 1/5 small diesis. Third = 3\5 |
TEMP19EBF.SCL | 19 | Cycle of 19 equal beating fifths |
TEMP19EBMT.SCL | 19 | Cycle of 19 equal beating minor thirds |
TEMP19EBO.SCL | 19 | Cycle of 19 equal beating octaves in twelfth |
TEMP19EBT.SCL | 19 | Cycle of 19 equal beating thirds |
TEMP19LST.SCL | 19 | Cycle of 19 least squares thirds 5/4^5 = 3/2 |
TEMP19LST2.SCL | 19 | Cycle of 19 least squares thirds 5/4, 3/2 (5), 6/5 (4) |
TEMP21EBS.SCL | 21 | Cycle of 21 equal beating sevenths |
TEMP22EBF.SCL | 22 | Cycle of 22 equal beating fifths |
TEMP22EBT.SCL | 22 | Cycle of 22 equal beating thirds |
TEMP22FO2.SCL | 22 | Fifth beats twice octave |
TEMP23EBS.SCL | 23 | Cycle of 23 equal beating major sixths |
TEMP24EBF.SCL | 24 | 24-tone ET with 23 equal beatings fifths. Fifth on 17 slightly smaller. |
TEMP25EBT.SCL | 25 | Cycle of 25 equal beating thirds |
TEMP26EB3.SCL | 26 | Cycle of 26 fifths, 5/4 beats three times 3/2 |
TEMP26EBF.SCL | 26 | Cycle of 26 equal beating fifths |
TEMP26EBS.SCL | 26 | Cycle of 26 equal beating sevenths |
TEMP27C8.SCL | 27 | Cycle of 27 fifths tempered by 1/8 of difference between augm. 2nd and 5/4 |
TEMP27EB2.SCL | 27 | Cycle of 27 fourths, 5/4 beats twice 4/3 |
TEMP28EBT.SCL | 28 | Cycle of 28 equal beating thirds |
TEMP29EBF.SCL | 29 | Cycle of 29 equal beating fifths |
TEMP29FO.SCL | 29 | Fifth beats equal octave |
TEMP31C51.SCL | 31 | Cycle of 31 51/220-comma tempered fifths (twice diff. of 31-tET and 1/4-comma) |
TEMP31EB1.SCL | 31 | Cycle of 31 thirds, 3/2 beats equal 5/4. Third 1/18 synt. comma higher |
TEMP31EB1A.SCL | 31 | Cycle of 31 thirds, 5/4 beats equal 7/4 |
TEMP31EB2.SCL | 31 | Cycle of 31 thirds, 3/2 beats twice 5/4 |
TEMP31EB2A.SCL | 31 | Cycle of 31 thirds, 5/4 beats twice 3/2 |
TEMP31EB2B.SCL | 31 | Cycle of 31 thirds, 5/4 beats twice 7/4 (7/4 beats twice 5/4 gives 31-tET) |
TEMP31EBF.SCL | 31 | Cycle of 31 equal beating fifths |
TEMP31EBS.SCL | 31 | Cycle of 31 equal beating sevenths |
TEMP31EBS1.SCL | 31 | Cycle of 31 sevenths, 3/2 beats equal 7/4. 17/9 schisma fifth |
TEMP31EBS2.SCL | 31 | Cycle of 31 sevenths, 3/2 beats twice 7/4. Almost 31-tET |
TEMP31EBSI.SCL | 31 | Cycle of 31 equal beating major sixths |
TEMP31EBT.SCL | 31 | Cycle of 31 equal beating thirds |
TEMP31G3.SCL | 31 | Cycle of 31 sevenths tempered by 1/3 gamelan residue |
TEMP31G4.SCL | 31 | Cycle of 31 sevenths tempered by 1/4 gamelan residue |
TEMP31G5.SCL | 31 | Cycle of 31 sevenths tempered by 1/5 gamelan residue |
TEMP31G6.SCL | 31 | Cycle of 31 sevenths tempered by 1/6 gamelan residue |
TEMP31G7.SCL | 31 | Cycle of 31 sevenths tempered by 1/7 gamelan residue |
TEMP31H10.SCL | 31 | Cycle of 31 fifths tempered by 1/10 Harrison's comma |
TEMP31H11.SCL | 31 | Cycle of 31 fifths tempered by 1/11 Harrison's comma |
TEMP31H12.SCL | 31 | Cycle of 31 fifths tempered by 1/12 Harrison's comma |
TEMP31H8.SCL | 31 | Cycle of 31 fifths tempered by 1/8 Harrison's comma |
TEMP31H9.SCL | 31 | Cycle of 31 fifths tempered by 1/9 Harrison's comma |
TEMP31TO.SCL | 31 | Third beats equal octave |
TEMP31W10.SCL | 31 | Cycle of 31 thirds tempered by 1/10 Wuerschmidt comma |
TEMP31W11.SCL | 31 | Cycle of 31 thirds tempered by 1/11 Wuerschmidt comma |
TEMP31W12.SCL | 31 | Cycle of 31 thirds tempered by 1/12 Wuerschmidt comma |
TEMP31W13.SCL | 31 | Cycle of 31 thirds tempered by 1/13 Wuerschmidt comma |
TEMP31W14.SCL | 31 | Cycle of 31 thirds tempered by 1/14 Wuerschmidt comma |
TEMP31W15.SCL | 31 | Cycle of 31 thirds tempered by 1/15 Wuerschmidt comma, almost 31-tET |
TEMP31W8.SCL | 31 | Cycle of 31 thirds tempered by 1/8 Wuerschmidt comma |
TEMP31W9.SCL | 31 | Cycle of 31 thirds tempered by 1/9 Wuerschmidt comma |
TEMP34EB2A.SCL | 34 | Cycle of 34 thirds, 5/4 beats twice 3/2 |
TEMP34EBSI.SCL | 34 | Cycle of 34 equal beating major sixths |
TEMP34EBT.SCL | 34 | Cycle of 34 equal beating thirds |
TEMP34W10.SCL | 34 | Cycle of 34 thirds tempered by 1/10 Wuerschmidt comma |
TEMP34W5.SCL | 34 | Cycle of 34 thirds tempered by 1/5 Wuerschmidt comma |
TEMP34W6.SCL | 34 | Cycle of 34 thirds tempered by 1/6 Wuerschmidt comma |
TEMP34W7.SCL | 34 | Cycle of 34 thirds tempered by 1/7 Wuerschmidt comma |
TEMP34W8.SCL | 34 | Cycle of 34 thirds tempered by 1/8 Wuerschmidt comma |
TEMP34W9.SCL | 34 | Cycle of 34 thirds tempered by 1/9 Wuerschmidt comma |
TEMP3EBT.SCL | 3 | Cycle of 3 equal beating thirds |
TEMP4EBMT.SCL | 4 | Cycle of 4 equal beating minor thirds |
TEMP4EBSI.SCL | 4 | Cycle of 4 equal beating major sixths |
TEMP53EBSI.SCL | 53 | Cycle of 53 equal beating major sixths |
TEMP53EBT.SCL | 53 | Cycle of 53 equal beating thirds |
TEMP5EBF.SCL | 5 | Cycle of 5 equal beating fifths |
TEMP5EBS.SCL | 5 | Cycle of 5 equal beating harmonic sevenths |
TEMP6EB2.SCL | 6 | Cycle of 6 equal beating 9/8 seconds |
TEMP6TEB.SCL | 6 | Cycle of 6 equal beating 6/5's in a twelfth |
TEMP7-5EBF.SCL | 12 | 7 equal beating fifths on white, 5 equal beating fifths on black |
TEMP7EBF.SCL | 7 | Cycle of 7 equal beating fifths |
TEMP8EB3Q.SCL | 8 | Cycle of 8 equal "beating" 12/11's |
TEMP9EBMT.SCL | 9 | Cycle of 9 equal beating 7/6 septimal minor thirds |
TETRAGAM-DI.SCL | 12 | Tetragam Dia2 |
TETRAGAM-EN.SCL | 12 | Tetragam Enharm. |
TETRAGAM-HEX.SCL | 12 | Tetragam/Hexgam |
TETRAGAM-PY.SCL | 12 | Tetragam Pyth. |
TETRAGAM-SLPE.SCL | 12 | Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B |
TETRAGAM-SLPE2.SCL | 12 | Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B |
TETRAGAM-SP.SCL | 12 | Tetragam Septimal |
TETRAGAM-UN.SCL | 12 | Tetragam Undecimal |
TETRAGAM13.SCL | 12 | Tetragam (13-tET) |
TETRAGAM5.SCL | 12 | Tetragam (5-tET) |
TETRAGAM6.SCL | 12 | Tetragam (6-tET) |
TETRAGAM7.SCL | 12 | Tetragam (7-tET) |
TETRAGAM8.SCL | 12 | Tetragam (8-tET) |
TETRAGAM9A.SCL | 12 | Tetragam (9-tET) A |
TETRAGAM9B.SCL | 12 | Tetragam (9-tET) B |
TETRAPHONIC_31.SCL | 31 | 31-tone Tetraphonic Cycle, conjunctive form on 5/4, 6/5, 7/6 and 8/7 |
TETRATRIAD.SCL | 9 | 4:5:6 Tetratriadic scale |
TETRATRIAD1.SCL | 9 | 3:5:9 Tetratriadic scale |
THAILAND.SCL | 7 | Observed ranat tuning from Thailand. Helmholtz (#85, p. 518) |
THAILAND2.SCL | 7 | Tuning from an out of tune Thai instrument. Helmholtz p. 518, see p. 556 |
THAILAND3.SCL | 7 | Observed tak'hay tuning. Helmholtz, p. 518 |
THAILAND4.SCL | 7 | Observed ranat t'hong tuning. Helmholtz, p. 518 |
TIBY1.SCL | 7 | Tiby's 1st Byzantine Liturgical genus, 12 + 13 + 3 parts |
TIBY2.SCL | 7 | Tiby's second Byzantine Liturgical genus, 12 + 5 + 11 parts |
TIBY3.SCL | 7 | Tiby's third Byzantine Liturgical genus, 12 + 9 + 7 parts |
TIBY4.SCL | 7 | Tiby's fourth Byzantine Liturgical genus, 9 + 12 + 7 parts |
TONOS15_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-15 |
TONOS17_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-17 |
TONOS19_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-19 |
TONOS21_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-21 |
TONOS23_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-23 |
TONOS25_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-25 |
TONOS27_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-27 |
TONOS29_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-29 |
TONOS31_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-31 |
TONOS31_PIS2.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-31B |
TONOS33_PIS.SCL | 15 | Diatonic Perfect Immutable System in the new Tonos-33 |
TRANH.SCL | 5 | Bac Dan Tranh scale, Vietnam |
TRANH2.SCL | 5 | Dan Ca Dan Tranh Scale |
TRANH3.SCL | 6 | Sa Mac Dan Tranh scale |
TRI12-1.SCL | 12 | 12-tone Tritriadic of 7:9:11 |
TRI12-2.SCL | 12 | 12-tone Tritriadic of 6:7:9 |
TRI19-1.SCL | 19 | 3:5:7 Tritriadic 19-Tone Matrix |
TRI19-2.SCL | 19 | 3:5:9 Tritriadic 19-Tone Matrix |
TRI19-3.SCL | 19 | 4:5:6 Tritriadic 19-Tone Matrix |
TRI19-4.SCL | 19 | 4:5:9 Tritriadic 19-Tone Matrix |
TRI19-5.SCL | 19 | 5:7:9 Tritriadic 19-Tone Matrix |
TRI19-6.SCL | 19 | 6:7:8 Tritriadic 19-Tone Matrix |
TRI19-7.SCL | 19 | 6:7:9 Tritriadic 19-Tone Matrix |
TRI19-8.SCL | 19 | 7:9:11 Tritriadic 19-Tone Matrix |
TRI19-9.SCL | 19 | 4:5:7 Tritriadic 19-Tone Matrix |
TRIANG11.SCL | 15 | 11-limit triangular diamond lattice with 64/63 intervals removed |
TRIAPHONIC_12.SCL | 12 | 12-tone Triaphonic Cycle, conjunctive form on 4/3, 5/4 and 6/5 |
TRIAPHONIC_17.SCL | 17 | 17-tone Triaphonic Cycle, conjunctive form on 4/3, 7/6 and 9/7 |
TRICHORD.SCL | 11 | Trichordal Undecatonic |
TRITRIAD.SCL | 7 | Tritriadic scale of the 10:12:15 triad, natural minor mode |
TRITRIAD10.SCL | 7 | Tritriadic scale of the 10:14:15 triad |
TRITRIAD11.SCL | 7 | Tritriadic scale of the 11:13:15 triad |
TRITRIAD13.SCL | 7 | Tritriadic scale of the 10:13:15 triad |
TRITRIAD14.SCL | 7 | 14.18.21 Tritriadic. Primary triads 1/1 9/7 3/2, secondary are 1/1 7/6 3/2 |
TRITRIAD18.SCL | 7 | Tritriadic scale of the 18:22:27 triad |
TRITRIAD22.SCL | 7 | Tritriadic scale of the 22:27:33 triad |
TRITRIAD26.SCL | 7 | Tritriadic scale of the 26:30:39 triad |
TRITRIAD3.SCL | 7 | Tritriadic scale of the 3:5:7 triad. Possibly Mathews's 3.5.7a |
TRITRIAD32.SCL | 7 | Tritriadic scale of the 26:32:39 triad |
TRITRIAD3C.SCL | 7 | From 1/1 7/6 7/5, a variant of the 3.5.7 triad |
TRITRIAD3D.SCL | 7 | From 1/1 7/6 5/3, a variant of the 3.5.7 triad |
TRITRIAD5.SCL | 7 | Tritriadic scale of the 5:7:9 triad, perhaps Mathews's 5.7.9a. |
TRITRIAD68.SCL | 7 | Tritriadic scale of the 6:7:8 triad |
TRITRIAD68I.SCL | 7 | Tritriadic scale of the subharmonic 6:7:8 triad |
TRITRIAD69.SCL | 7 | Tritriadic scale of the 6:7:9 triad |
TRITRIAD7.SCL | 7 | Tritriadic scale of the 7:9:11 triad |
TRITRIAD9.SCL | 7 | Tritriadic scale of the 9:11:13 triad |
TSJEREPNIN.SCL | 9 | Scale from Ivan Tsjerepnin's Santur Opera (1977) & suite from it Santur Live! |
TUNERS1.SCL | 12 | The Tuner's Guide well temperament no. 1 (1840) |
TUNERS2.SCL | 12 | The Tuner's Guide well temperament no. 2 (1840) |
TUNERS3.SCL | 12 | The Tuner's Guide well temperament no. 3 (1840) |
TURKISH.SCL | 7 | Turkish, 5-limit from Palmer on a Turkish music record, harmonic minor inverse |
TURKISH_24.SCL | 24 | Ra'uf Yaqta Bey, 24 of 53 tones, Theoretical Turkish gamut |
TURKISH_24A.SCL | 24 | Turkish gamut with schismatic simplifications |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
URMAWI.SCL | 7 | al-Urmawi, one of twelve maqam rows. First tetrachord is Rast |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
VALLOTTI.SCL | 12 | Vallotti & Young scale (Vallotti version) |
VERTEX_CHROM.SCL | 7 | A vertex tetrachord from Chapter 5, 66.7 + 266.7 + 166.7 cents |
VERTEX_CHROM2.SCL | 7 | A vertex tetrachord from Chapter 5, 83.3 + 283.3 + 133.3 cents |
VERTEX_CHROM3.SCL | 7 | A vertex tetrachord from Chapter 5, 87.5 + 287.5 + 125 cents |
VERTEX_CHROM4.SCL | 7 | A vertex tetrachord from Chapter 5, 88.9 + 288.9 + 122.2 cents |
VERTEX_CHROM5.SCL | 7 | A vertex tetrachord from Chapter 5, 133.3 + 266.7 + 100 cents |
VERTEX_DIAT.SCL | 7 | A vertex tetrachord from Chapter 5, 233.3 + 133.3 + 133.3 cents |
VERTEX_DIAT10.SCL | 7 | A vertex tetrachord from Chapter 5, 212.5 + 162.5 + 125 cents |
VERTEX_DIAT11.SCL | 7 | A vertex tetrachord from Chapter 5, 212.5 + 62.5 + 225 cents |
VERTEX_DIAT12.SCL | 7 | A vertex tetrachord from Chapter 5, 200 + 125 + 175 cents |
VERTEX_DIAT2.SCL | 7 | A vertex tetrachord from Chapter 5, 233.3 + 166.7 + 100 cents |
VERTEX_DIAT3.SCL | 7 | A vertex tetrachord from Chapter 5, 75 + 225 + 200 cents |
VERTEX_DIAT4.SCL | 7 | A vertex tetrachord from Chapter 5, 225 + 175 + 100 cents |
VERTEX_DIAT5.SCL | 7 | A vertex tetrachord from Chapter 5, 87.5 + 237.5 + 175 cents |
VERTEX_DIAT7.SCL | 7 | A vertex tetrachord from Chapter 5, 200 + 75 + 225 cents |
VERTEX_DIAT8.SCL | 7 | A vertex tetrachord from Chapter 5, 100 + 175 + 225 cents |
VERTEX_DIAT9.SCL | 7 | A vertex tetrachord from Chapter 5, 212.5 + 137.5 + 150 cents |
VERTEX_SDIAT.SCL | 7 | A vertex tetrachord from Chapter 5, 87.5 + 187.5 + 225 cents |
VERTEX_SDIAT2.SCL | 7 | A vertex tetrachord from Chapter 5, 75 + 175 + 250 cents |
VERTEX_SDIAT3.SCL | 7 | A vertex tetrachord from Chapter 5, 25 + 225 + 250 cents |
VERTEX_SDIAT4.SCL | 7 | A vertex tetrachord from Chapter 5, 66.7 + 183.3 + 250 cents |
VERTEX_SDIAT5.SCL | 7 | A vertex tetrachord from Chapter 5, 233.33 + 16.67 + 250 cents |
VICENTINO1.SCL | 36 | Usual Archicembalo tuning, 31-tET plus D,E,G,A,B a 10th tone higher |
VICENTINO2.SCL | 36 | Alternative Archicembalo tuning, lower 3 rows the same upper 3 rows 3/2 higher |
VICTORIAN.SCL | 12 | Form of Victorian temperament (1885) |
VOGEL.SCL | 21 | Vogel's 21-tone Archytas system, see Divisions of the tetrachord |
VOLANS.SCL | 7 | African scale according to Volans 0=G |
VONG.SCL | 7 | Vong Co Dan Tranh scale, Vietnam |
VRIES19-72.SCL | 18 | Leo de Vries 19/72 Through-Transposing-Tonality 18 tone scale |
VRIES35-72.SCL | 17 | Leo de Vries 35/72 Through-Transposing-Tonality 17 tone scale |
VRIES5-72.SCL | 18 | Leo de Vries 5/72 Through-Transposing-Tonality 18 tone scale |
VRIES6-31.SCL | 11 | Leo de Vries 6/31 TTT used in "For 31-tone organ" (1995) |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
WALKER_21.SCL | 21 | Douglas Walker, 1977, for "out of the fathomless dark/into the limitless light |
WERCK1.SCL | 20 | Werckmeister I (just intonation) |
WERCK3.SCL | 12 | Andreas Werckmeister's temperament III (the most famous one, 1681) |
WERCK3_EB.SCL | 12 | Werckmeister III equal beating version, 5/4 beats twice 3/2 |
WERCK4.SCL | 12 | Andreas Werckmeister's temperament IV |
WERCK5.SCL | 12 | Andreas Werckmeister's temperament V |
WERCK6.SCL | 12 | Andreas Werckmeister's "septenarius" tuning VI |
WERCK6_DUP.SCL | 12 | Andreas Werckmeister's VI in the interpretation by Dupont (1935) |
WICKS.SCL | 12 | Mark Wicks' equal beating temperament for organs (1887) |
WILSON-1.SCL | 19 | Wilson 19-tone, 1976 |
WILSON-2.SCL | 19 | Wilson 19-tone, 1975 |
WILSON-3.SCL | 19 | Wilson 19-tone |
WILSON11.SCL | 19 | Wilson 11-limit 19-tone scale, 1977 |
WILSON5.SCL | 22 | Wilson's 22-tone 5-limit scale |
WILSON7.SCL | 22 | Wilson's 22-tone 7-limit 'marimba' scale |
WILSON7_2.SCL | 22 | Wilson 7-limit scale |
WILSON7_3.SCL | 22 | Wilson 7-limit scale |
WILSON_17.SCL | 17 | Wilson's 17-tone 5-limit scale |
WILSON_BAG.SCL | 7 | Erv's bagpipe, mar '97, after Theodore Podnos (37-39). |
WILSON_CLASS.SCL | 12 | Class Scale, Erv Wilson, 9 july 1967 |
WILSON_DIA1.SCL | 22 | Wilson Diaphonic cycles, tetrachordal form |
WILSON_DIA2.SCL | 22 | Wilson Diaphonic cycle, conjunctive form |
WILSON_DIA3.SCL | 22 | Wilson Diaphonic cycle on 3/2 |
WILSON_DIA4.SCL | 22 | Wilson Diaphonic cycle on 4/3 |
WILSON_DUO.SCL | 22 | Wilson 'duovigene' |
WILSON_ENH.SCL | 7 | Wilson's Enharmonic & 3rd new Enharmonic on Hofmann's list of superp. 4chords |
WILSON_ENH2.SCL | 7 | Wilson's 81/64 Enharmonic, a strong division of the 256/243 pyknon |
WILSON_FACET.SCL | 22 | Wilson study in 'conjunct facets', Hexany based |
WILSON_HELIX.SCL | 12 | Wilson's Helix Song, see David Rosenthal, Helix Song, XH 7&8, 1979 |
WILSON_HYPENH.SCL | 7 | Wilson's Hyperenharmonic, this genus has a CI of 9/7 |
WILSON_L1.SCL | 22 | Wilson 11-limit scale |
WILSON_L2.SCL | 22 | Wilson 11-limit scale |
WILSON_L3.SCL | 22 | Wilson 11-limit scale |
WILSON_L4.SCL | 22 | Wilson 11-limit scale |
WILSON_L5.SCL | 22 | Wilson 11-limit scale |
WILSON_L6.SCL | 22 | Wilson 1 3 7 9 11 15 eikosany plus 9/8 and tritone. Used Stearns: Jewel |
WINDOW.SCL | 21 | Window lattice |
WINNINGTON.SCL | 5 | Winnington-Ingram's Spondeion |
WRONSKI.SCL | 12 | Wronski's scale, from Jocelyn Godwin, "Music and the Occult", p. 105. |
WURSCHMIDT.SCL | 12 | Wuerschmidt's normalised 12-tone system |
WURSCHMIDT1.SCL | 19 | Wuerschmidt-1 19-tone scale |
WURSCHMIDT2.SCL | 19 | Wuerschmidt-2 19-tone scale |
WURSCHMIDT_31.SCL | 31 | Wuerschmidt's 31-tone system |
WURSCHMIDT_31A.SCL | 31 | Wuerschmidt's 31-tone system with alternative tritone |
WURSCHMIDT_53.SCL | 53 | Wuerschmidt's 53-tone system |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
XENAKIS_CHROM.SCL | 7 | Xenakis's Byzantine Liturgical mode, 5 + 19 + 6 parts |
XENAKIS_DIAT.SCL | 7 | Xenakis's Byzantine Liturgical mode, 12 + 11 + 7 parts |
XENAKIS_SCHROM.SCL | 7 | Xenakis's Byzantine Liturgical mode, 7 + 16 + 7 parts |
XYLOPHONE.SCL | 5 | Observed south Pacific pentatonic xylophone tuning |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
YASSER_6.SCL | 6 | Yasser Hexad, 6 of 19 as whole tone scale |
YASSER_DIAT.SCL | 12 | Yasser's Supra-Diatonic, the flat notes are V,W,X,Y,and Z |
YASSER_JI.SCL | 12 | Yasser's JI Scale, 2 Yasser hexads, a 121/91 apart |
YOUNG-G.SCL | 28 | Gayle Young's Harmonium, see PNM 26(2): 204-212 (1988) |
YOUNG-LM_GUITAR.SCL | 12 | LaMonte Young, Tuning of For Guitar '58. 1/1 March '92, inv.of Mersenne lute 1 |
YOUNG-LM_PIANO.SCL | 12 | LaMonte Young's Well-Tempered Piano |
YOUNG.SCL | 12 | Vallotti & Young well temperament (Young version) |
YOUNG2.SCL | 12 | Young 2 well temperament, ca. 1800 |
YUGO_BAGPIPE.SCL | 12 | Yugoslavian Bagpipe |
YVES.SCL | 7 | St Yves's scale II from Jocelyn Godwin, "Music and the Occult", 1995. |
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Filename | Size | Description |
---|---|---|
ZALZAL.SCL | 7 | Tuning of popular flute by Al Farabi & Zalzal. First tetrachord is modern Rast |
ZALZAL2.SCL | 7 | Zalzal's Scale, a medieval Islamic with Ditone Diatonic & 10/9 x 13/12 x 72/65 |
ZARLINO.SCL | 7 | Ptolemy's Intense Diatonic Systonon, also Zarlino's scale |
ZESSTER_A.SCL | 8 | Harmonic six-star, group A, from Fokker |
ZESSTER_B.SCL | 8 | Harmonic six-star, group B, from Fokker |
ZESSTER_C.SCL | 8 | Harmonic six-star, group C on Eb, from Fokker |
ZESSTER_MIX.SCL | 16 | Harmonic six-star, groups A, B and C mixed, from Fokker |
ZIR_BOUZOURK.SCL | 6 | Zirafkend Bouzourk (IG #3, DF #9), from both Rouanet and Safi al-Din |
ZOOMOOZ.SCL | 31 | Zoomoozophone tuning based on Partch's. Base freq. 392 Hz |
ZWOLLE.SCL | 12 | Henri Arnaut De Zwolle. Pythagorean on G flat. |
24 Apr 1998