Contents of Scale Archive


- # -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
05-19.SCL 5 5 out of 19-tET
05-24.SCL 5 5 out of 24-tET, symmetrical
07-19.SCL 7 7 out of 19-tET, major
08-19.SCL 8 8 out of 19-tET
09-19.SCL 9 9 out of 19-tET
10-19.SCL 10 10 out of 19-tET. For 9 out of 19 discard degree 3
11-19-MCLAREN.SCL 11 11 out of 19-tET, Brian McLaren. Asc: 311313313 Desc: 313131313
11-19.SCL 11 11 out of 19-tET
12-19.SCL 12 12 out of 19-tET scale from Mandelbaum's dissertation
12-31.SCL 12 12 out of 31-tET (mean-tone)
12-43.SCL 12 12 out of 43-tET (1/5-comma mean-tone)
12-50.SCL 12 12 out of 50-tET
12-91.SCL 12 12 out of 91-tET (1/7-comma mean-tone)
13-19.SCL 13 13 out of 19-tET
14-19.SCL 14 14 out of 19-tET
14-26.SCL 14 Two interlaced diatonic in 26-tET, tetrachordal. Paul Erlich (1996)
14-26A.SCL 14 Two interlaced diatonic in 26-tET, maximally even. Paul Erlich (1996)
17-53.SCL 17 17 out of 53-tET, Arabic Pythagorean scale
19-31.SCL 19 19 out of 31-tET
19-31JI.SCL 19 A septimal interpretation of 19 out of 31 tones, after Wilson, XH7+8
19-36.SCL 19 19 out of 36-tET, Tomasz Liese, Tuning List, 1997
19-50.SCL 19 19 out of 50-tET
19-53.SCL 19 19 out of 53-tET by Larry H. Hanson, 1978
19-ANY.SCL 19 2 out of 1/7 1/5 1/3 1 3 5 7 CPS
20-31.SCL 20 20 out of 31-tET
21-ANY.SCL 21 1.3.5.7.9.11.13 2)7 21-any, 1.3 tonic
22-53.SCL 22 22 shrutis out of 53-tET
24-36.SCL 24 12 and 18-tET mixed
24-60.SCL 24 12 and 15-tET mixed
28-ANY.SCL 26 6)8 28-any from 1.3.5.7.9.11.13.15, only 26 tones
30-29-MIN3.SCL 9 30/29 x 29/28 x 28/27 plus 6/5
56-ANY.SCL 48 3)8 56-any from 1.3.5.7.9.11.13.15, 1.3.5 tonic, only 48 notes
70-ANY.SCL 70 1.3.5.7.11.13.17.19 4)8 70-any, tonic 1.3.5.7

- A -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
ABELL1.SCL 12 Ross Abell's French Baroque Meantone 1, a'=520
ABELL2.SCL 12 Ross Abell's French Baroque Meantone 2, a'=520
ABELL3.SCL 12 Ross Abell's French Baroque Meantone 3, a'=520
ABELL4.SCL 12 Ross Abell's French Baroque Meantone 4, a'=520
ABELL5.SCL 12 Ross Abell's French Baroque Meantone 5, a'=520
ABELL6.SCL 12 Ross Abell's French Baroque Meantone 6, a'=520
ABELL7.SCL 12 Ross Abell's French Baroque Meantone 7, a'=520
ABELL8.SCL 12 Ross Abell's French Baroque Meantone 8, a'=520
ABELL9.SCL 12 Ross Abell's French Baroque Meantone 9, a'=520
AD-DIK.SCL 24 Amin Ad-Dik, d'Erlanger, vol 5, p.42
ADJENG.SCL 5 Soeroepan adjeng
AEOLIC.SCL 7 Ancient Greek Aeolic, also tritriadic scale of the 54:64:81 triad
AFRICA-W.SCL 7 Observed balafon tuning from West-Africa
AFRICA-W2.SCL 7 Pitt-River's balafon tuning from West-Africa
AFRICA-X.SCL 10 African Yaswa xylophones (idiophone; calbash resonators with membrane)
AGRICOLA.SCL 12 Agricola's Monochord
AL-DIN.SCL 35 Safi al-Din's complete lute tuning on 5 strings 4/3 apart
AL-DIN_19.SCL 19 Arabic scale by Safi al-Din
AL-FARABI.SCL 7 Al-Farabi Syn Chrom
AL-FARABI_19.SCL 19 Arabic scale by Al Farabi
AL-FARABI_BLUE.SCL 7 Another tuning from Al Farabi, c700 AD
AL-FARABI_CHROM.SCL 7 Al Farabi's Chromatic c700 AD
AL-FARABI_CHROM2.SCL 7 Al-Farabi's Chromatic permuted
AL-FARABI_DIAT.SCL 7 Al-Farabi's Diatonic
AL-FARABI_DIAT2.SCL 7 Old Phrygian, permuted form of Al-Farabi's reduplicated 10/9 diatonic genus
AL-FARABI_DIV.SCL 10 Al Farabi's 10 intervals for the division of the tetrachord
AL-FARABI_DIV2.SCL 12 Al-Farabi's tetrachord division, incl. extra 2187/2048 & 19683/16384
AL-FARABI_DIVO.SCL 24 Al Farabi's theoretical octave division with identical tetrachords, 10th c.
AL-FARABI_DOR.SCL 7 Dorian mode of Al-Farabi's 10/9 Diatonic
AL-FARABI_DOR2.SCL 7 Dorian mode of Al-Farabi's Diatonic
AL-FARABI_G1.SCL 7 Al-Farabi's Greek genus conjunctum medium, Land
AL-FARABI_G10.SCL 7 Al-Farabi's Greek genus chromaticum forte
AL-FARABI_G11.SCL 7 Al-Farabi's Greek genus chromaticum mollissimum
AL-FARABI_G12.SCL 7 Al-Farabi's Greek genus mollissimum ordinantium
AL-FARABI_G3.SCL 7 Al-Farabi's Greek genus conjunctum primum
AL-FARABI_G4.SCL 7 Al-Farabi's Greek genus forte duplicatum primum
AL-FARABI_G5.SCL 7 Al-Farabi's Greek genus conjunctum tertium, or forte aequatum
AL-FARABI_G6.SCL 7 Al-Farabi's Greek genus forte disjunctum primum
AL-FARABI_G7.SCL 7 Al-Farabi's Greek genus non continuum acre
AL-FARABI_G8.SCL 7 Al-Farabi's Greek genus non continuum mediocre
AL-FARABI_G9.SCL 7 Al-Farabi's Greek genus non continuum laxum
AL-HWARIZMI.SCL 6 Al-Hwarizmi's tetrachord division
AL-KINDI.SCL 6 Al-Kindi's tetrachord division
ALBION.SCL 12 Terry Riley's Harp of New Albion scale, inverse of Malcolm's Monochord
ALEMBERT.SCL 12 Jean-Le Rond d'Alembert modified meantone (1726)
ALTERNATE.SCL 12 alternate? 7-limit
ALVES.SCL 13 Bill Alves, tuning for "Instantaneous Motion", 1/1 vol. 6/3
ANGKLUNG.SCL 8 Scale of an anklung set from Tasikmalaya. 1/1=174 Hz
ANON1.SCL 12 Anonymus: Pro clavichordiis faciendis, Erlangen 15th century
ARABIC.SCL 17 Arabic 17-tone Pythagorean mode, Safi al-Din
ARABIC1.SCL 12 From Fortuna. Try C or G major
ARABIC2.SCL 12 From Fortuna. Try C or F minor
ARABIC_KINDI.SCL 14 Arabic mode by al-Kindi
ARABIC_MAUSILI.SCL 11 Arabic mode by Ishaq al-Mausili, ? - 850 AD
ARCH_CHROM.SCL 7 Archytas' Chromatic
ARCH_CHROMC2.SCL 14 Product set of 2 of Archytas' Chromatic
ARCH_DOR.SCL 8 Dorian mode of Archytas' Chromatic with added 16/9
ARCH_ENH.SCL 7 Archytas' Enharmonic
ARCH_ENH2.SCL 8 Archytas' Enharmonic with added 16/9
ARCH_ENH3.SCL 7 Complex 9 of p. 113 based on Archytas's Enharmonic
ARCH_ENHP.SCL 7 Permutation of Archytas's Enharmonic with the 36/35 first
ARCH_ENHT.SCL 7 Complex 6 of p. 113 based on Archytas's Enharmonic
ARCH_ENHT2.SCL 7 Complex 5 of p. 113 based on Archytas's Enharmonic
ARCH_ENHT3.SCL 7 Complex 1 of p. 113 based on Archytas's Enharmonic
ARCH_ENHT4.SCL 7 Complex 8 of p. 113 based on Archytas's Enharmonic
ARCH_ENHT5.SCL 7 Complex 10 of p. 113 based on Archytas's Enharmonic
ARCH_ENHT6.SCL 7 Complex 2 of p. 113 based on Archytas's Enharmonic
ARCH_ENHT7.SCL 7 Complex 11 of p. 113 based on Archytas's Enharmonic
ARCH_MULT.SCL 12 Multiple Archytas
ARCH_PTOL.SCL 12 Archytas/Ptolemy Hybrid 1
ARCH_PTOL2.SCL 12 Archytas/Ptolemy Hybrid 2
ARCH_SEPT.SCL 12 Archytas Septimal
ARIEL1.SCL 12 Ariel 1
ARIEL2.SCL 12 Ariel 2
ARIEL3.SCL 12 Ariel's 12-tone JI scale
ARIEL_19.SCL 19 Ariel 19-tone scale
ARIEL_31.SCL 31 Ariel's 31-tone system
ARIST_ARCHENH.SCL 7 PsAristo Arch. Enharmonic, 4 + 3 + 23 parts, similar to Archytas' enharmonic
ARIST_CHROM.SCL 7 Dorian, Neo-Chromatic,6+18+6 parts = Athanasopoulos' Byzant.liturg. 2nd chrom.
ARIST_CHROM2.SCL 7 Dorian Mode, a 1:2 Chromatic, 8 + 18 + 4 parts
ARIST_CHROM3.SCL 7 PsAristo 3 Chromatic, 7 + 7 + 16 parts
ARIST_CHROM4.SCL 7 PsAristo Chromatic, 5.5 + 5.5 + 19 parts
ARIST_CHROMENH.SCL 7 Aristoxenos' Chromatic/Enharmonic, 3 + 9 + 18 parts
ARIST_CHROMINV.SCL 7 Aristoxenos' Inverted Chromatic, Dorian mode, 18 + 6 + 6 parts
ARIST_CHROMREJ.SCL 7 Aristoxenos Rejected Chromatic, 6 + 3 + 21 parts
ARIST_CHROMUNM.SCL 7 Unmelodic Chromatic, genus of Aristoxenos, Dorian Mode, 4.5 + 3.5 + 22 parts
ARIST_DIAT.SCL 7 Phrygian octave species on E, 12 + 6 + 12 parts
ARIST_DIAT2.SCL 7 PsAristo 2 Diatonic, 7 + 11 + 12 parts
ARIST_DIAT3.SCL 7 PsAristo Diat 3, 9.5 + 9.5 + 11 parts
ARIST_DIAT4.SCL 7 PsAristo Diatonic, 8 + 8 + 14 parts
ARIST_DIATDOR.SCL 7 PsAristo Redup. Diatonic, 14 + 2 + 14 parts
ARIST_DIATINV.SCL 7 Lydian octave species on E, Major Mode, 12 + 12 + 6 parts
ARIST_DIATRED.SCL 7 Aristo Redup. Diatonic, Dorian Mode, 14 + 14 + 2 parts
ARIST_DIATRED2.SCL 7 PsAristo 2 Redup. Diatonic 2, 4 + 13 + 13 parts
ARIST_DIATRED3.SCL 7 PsAristo 3 Redup. Diatonic, 8 + 11 + 11 parts
ARIST_ENH.SCL 7 Aristoxenos' Enharmonion, Dorian mode
ARIST_ENH2.SCL 7 PsAristo 2 Enharmonic, 3.5 + 3.5 + 23 parts
ARIST_ENH3.SCL 7 PsAristo Enharmonic, 2.5 + 2.5 + 25 parts
ARIST_HEMCHROM.SCL 7 Aristoxenos's Chromatic Hemiolion, Dorian Mode
ARIST_HEMCHROM2.SCL 7 PsAristo C/H Chromatic, 4.5 + 7.5 + 18 parts
ARIST_HEMCHROM3.SCL 7 Dorian mode of Aristoxenos' Hemiolic Chromatic according to Ptolemy's interpret
ARIST_HYPENH2.SCL 7 PsAristo 2nd Hyperenharmonic, 37.5 + 37.5 + 425 cents
ARIST_HYPENH3.SCL 7 PsAristo 3 Hyperenharmonic, 1.5 + 1.5 + 27 parts
ARIST_HYPENH4.SCL 7 PsAristo 4 Hyperenharmonic, 2 + 2 + 26 parts
ARIST_HYPENH5.SCL 7 PsAristo Hyperenharmonic, 23 + 23 + 454 cents
ARIST_INTDIAT.SCL 7 Dorian mode of Aristoxenos's Intense Diatonic according to Ptolemy
ARIST_PENH2.SCL 7 Permuted Aristoxenos's Enharmonion, 3 + 24 + 3 parts
ARIST_PENH3.SCL 7 Permuted Aristoxenos's Enharmonion, 24 + 3 + 3 parts
ARIST_PSCHROM2.SCL 7 PsAristo 2 Chromatic, 6.5 + 6.5 + 17 parts
ARIST_SOFTCHROM.SCL 7 Aristoxenos's Chromatic Malakon, Dorian Mode
ARIST_SOFTCHROM2.SCL 7 Aristoxenos' Soft Chromatic, 6 + 16.5 + 9.5 parts
ARIST_SOFTCHROM3.SCL 7 Aristoxenos's Chromatic Malakon, 9.5 + 16.5 + 6 parts
ARIST_SOFTCHROM4.SCL 7 PsAristo S. Chromatic, 6 + 7.5 + 16.5 parts
ARIST_SOFTCHROM5.SCL 7 Dorian mode of Aristoxenos' Soft Chromatic according to Ptolemy's interpretati
ARIST_SOFTDIAT.SCL 7 Aristoxenos's Diatonon Malakon, Dorian Mode
ARIST_SOFTDIAT2.SCL 7 Dorian Mode, 6 + 15 + 9 parts
ARIST_SOFTDIAT3.SCL 7 Dorian Mode, 9 + 15 + 6 parts
ARIST_SOFTDIAT4.SCL 7 Dorian Mode, 9 + 6 + 15 parts
ARIST_SOFTDIAT5.SCL 7 Dorian Mode, 15 + 6 + 9 parts
ARIST_SOFTDIAT6.SCL 7 Dorian Mode, 15 + 9 + 6 parts
ARIST_SOFTDIAT7.SCL 7 Dorian mode of Aristoxenos's Soft Diatonic according to Ptolemy
ARIST_SYNCHROM.SCL 7 Aristoxenos's Chromatic Syntonon, Dorian Mode
ARIST_SYNDIAT.SCL 7 Aristoxenos's Diatonon Syntonon, Dorian Mode
ARIST_UNCHROM.SCL 7 Aristoxenos's Unnamed Chromatic, Dorian Mode, 4 + 8 + 18 parts
ARIST_UNCHROM2.SCL 7 Dorian Mode, a 1:2 Chromatic, 8 + 4 + 18 parts
ARIST_UNCHROM3.SCL 7 Dorian Mode, a 1:2 Chromatic, 18 + 4 + 8 parts
ARIST_UNCHROM4.SCL 7 Dorian Mode, a 1:2 Chromatic, 18 + 8 + 4 parts
ARITH13.SCL 12 The first 13 terms of the arithmetic series, octave reduced
ARITH22.SCL 19 The first 22 terms of the arithmetic series, octave reduced
ARTUSI.SCL 12 Lute tuning of Giovanni Maria Artusi (1603). 1/4-comma w. acc. 1/2-way naturals
ART_NAM.SCL 9 Artificial Nam System
ATHAN_CHROM.SCL 7 Athanasopoulos's Byzantine Liturgical mode Chromatic
AUFTETF.SCL 8 5/4 C.I. again
AUGTETA.SCL 8 Linear Division of the 11/8, duplicated on the 16/11
AUGTETA2.SCL 8 Linear Division of the 7/5, duplicated on the 10/7
AUGTETB.SCL 8 Harmonic mean division of 11/8
AUGTETC.SCL 8 11/10 C.I.
AUGTETD.SCL 8 11/9 C.I.
AUGTETE.SCL 8 5/4 C.I.
AUGTETG.SCL 8 9/8 C.I.
AUGTETH.SCL 8 9/8 C.I. A gapped version of this scale is called AugTetI
AUGTETJ.SCL 6 9/8 C.I. comprised of 11:10:9:8 subharmonic series on 1 and 8:9:10:11 on 16/11
AUGTETK.SCL 6 9/8 C.I. This is the converse form of AugTetJ
AUGTETL.SCL 6 9/8 C.I. This is the harmonic form of AugTetI
AVG_BAC.SCL 7 Average Bac System
AVICENNA.SCL 7 Soft diatonic of Avicenna (Ibn Sina)
AVICENNA_19.SCL 19 Arabic scale by Ibn Sina
AVICENNA_CHROM.SCL 7 Dorian mode a chromatic genus of Avicenna
AVICENNA_CHROM2.SCL 7 Dorian Mode, a 1:2 Chromatic, 4 + 18 + 8 parts
AVICENNA_CHROM3.SCL 7 Avicenna's Chromatic permuted
AVICENNA_DIAT.SCL 7 Dorian mode a soft diatonic genus of Avicenna
AVICENNA_DIFF.SCL 12 Difference tones of Avicenna's Soft diatonic reduced by 2/1
AVICENNA_ENH.SCL 7 Dorian mode of Avicenna's (Ibn Sina) Enharmonic genus
AWAD.SCL 24 d'Erlanger vol.5, p.37, after Mans.ur 'Awad
AWRAAMOFF.SCL 12 Awraamoff Septimal Just
AYERS.SCL 36 Lydia Ayers, algorithmic composition.
AYERS_19.SCL 19 Scale for NINETEEN, for 19 for the 90's CD. Repeats at 37/19 (or 2/1)
AYERS_AP.SCL 5 Lydia Ayers' Appetizer, ICMC 96, Balinese Slendro from Singaraja,
AYERS_ME.SCL 9 Scale for Merapi (1996), Lydia Ayers. Slendro 0 2 4 5 7 9, Pelog 0 1 3 6 8 9

- B -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
BADUMA.SCL 7 African Baduma Sanza (idiophone, set of lamellas, thumb-plucked)
BAGPIPE.SCL 12 Bagpipe Tuning
BAGPIPE2.SCL 7 Highland Bagpipe, from Acustica4: 231 (1954) J.M.A Lenihan and S. McNeill
BALAFON.SCL 7 Observed balafon tuning from Patna
BAMBOO.SCL 23 Pythagorean scale with fifth average from Chinese bamboo tubes
BANYORO.SCL 5 African Banyoro Xylophone (idiophone; loose log)
BAPARE.SCL 10 African Bapare Xylophone, idiophone, loose-log
BAPERE.SCL 5 African, Bapere Horns Aerophone, made of reed, one note each
BARBOUR_CHROM1.SCL 7 Barbour's #1 Chromatic
BARBOUR_CHROM2.SCL 7 Barbour's #2 Chromatic
BARBOUR_CHROM3.SCL 7 Barbour's #3 Chromatic
BARBOUR_CHROM3P.SCL 7 permuted Barbour's #3 Chromatic
BARBOUR_CHROM3P2.SCL 7 permuted Barbour's #3 Chromatic
BARBOUR_CHROM4.SCL 7 Barbour's #4 Chromatic
BARBOUR_CHROM4P.SCL 7 permuted Barbour's #4 Chromatic
BARBOUR_CHROM4P2.SCL 7 permuted Barbour's #4 Chromatic
BARKECHLI.SCL 27 Mehdi Barkechli, 27-tone pyth. Arabic scale
BARNES.SCL 12 John Barnes' temperament (1979)
BARNES_BACH.SCL 12 Barnes-Bach, variation of Young, likely meant for Das Wohltemperierte Klavier
BARSTOW.SCL 18 Guitar scale for Partch's Barstow
BARTOK_AX.SCL 12 Bartok's axial system, 4 times S-T-D on major triad 4:5:6
BEARDSLEY.SCL 12 David Beardsley's scale used in "Science Friction". superparticular
BECKET.SCL 12 Quasi-equal temperament by the Becket and Co. plan (1840)
BELET.SCL 13 Belet, Brian 1992 Proceedings of the ICMC pp.158-161.
BEMETZRIEDER2.SCL 12 Anton Bemetzrieder temperament 2 (1808), is Vallotti in F#.
BETHISY.SCL 12 Bethisy temperament ordinaire, see Pierre-Yves Asselin: Musique et temperament
BEY-R.SCL 24 Idris Ragib Bey, vol.5 d'Erlanger, p 40. Idris Rag'ib Bey
BEY_24.SCL 24 Yekta Bey, 24-tone pyth. Arabic scale
BIGGULP.SCL 12 Big Gulp
BIRMA.SCL 7 Birmese scale, von Hornbostel
BLAS.SCL 23 Blasquintenzirkel. 23 fifths in 2 oct. C. Sachs, Vergleichende Musikwiss. p. 28
BOETH_CHROM.SCL 7 Boethius's Chromatic. The CI is 19/16
BOETH_ENH.SCL 8 Boethius's Enharmonic, with a CI of 81/64 and added 16/9
BOHLEN-P.SCL 13 Bohlen-Pierce scale. 13-tone equal division of 3/1
BOHLEN-P_9.SCL 9 Bohlen-Pierce subscale by J.R. Pierce with 3:5:7 triads
BOHLEN-P_EBT.SCL 13 Bohlen-Pierce scale with equal beating 7/3 tenth
BOHLEN-P_JI.SCL 13 See Bohlen, H. 13-Tonstufen in der Duodezime, Acustica 39: 76-86 (1978)
BOHLEN-P_RAT.SCL 13 Bohlen-Pierce scale, rational approximation
BOHLEN_11.SCL 11 11-tone scale by Bohlen, generated from the 1/1 3/2 5/2 triad
BOHLEN_12.SCL 12 12-tone scale by Bohlen generated from the 1/1 7/4 5/2 triad
BOHLEN_8.SCL 8 See Bohlen, H. 13-Tonstufen in der Duodezime, Acustica 39: 76-86 (1978)
BOHLEN_DELTA.SCL 9 Bohlen's delta scale, a mode B-P, see Acustica 39: 76-86 (1978)
BOHLEN_D_JI.SCL 9 Bohlen's delta scale, just version. "Dur" form, "moll" is inversion.
BOHLEN_GAMMA.SCL 9 Bohlen's gamma scale, a mode of the Bohlen-Pierce scale
BOHLEN_G_JI.SCL 9 Bohlen's gamma scale, just version
BOHLEN_HARM.SCL 9 Bohlen's harmonic scale, inverse of lambda
BOHLEN_H_JI.SCL 9 Bohlen's harmonic scale, just version
BOHLEN_LAMBDA.SCL 9 Bohlen's lambda scale, a mode of the Bohlen-Pierce scale
BOHLEN_L_JI.SCL 9 Bohlen's lambda scale, just version
BOHLEN_T.SCL 8 Bohlen, scale based on the twelfth
BOHLEN_T_JI.SCL 8 Bohlen, scale based on twelfth, just version
BOLIVIA.SCL 7 Observed scale from pan-pipe from La Paz. 1/1=171 Hz.
BOOMSLITER.SCL 12 Boomsliter & Creel basic set of their referential tuning.
BOULLIAU.SCL 12 Monsieur Boulliau's irregular temp. (1373), reported by Mersenne in 1636.
BREED.SCL 12 Graham Breed's fourth based 12-tone keyboard scale. Tuning List 23-10-97
BROWN.SCL 45 Tuning of Colin Brown's Voice Harmonium, Glasgow. Helmholtz/Ellis p. 470-473
BULGARIAN.SCL 12 Bulgarian bagpipe tuning
BURMA.SCL 7 Observed patala tuning from Burma
BURMA2.SCL 7 Observed balafon tuning from Burma
BURT-FORKS.SCL 19 Warren Burt 19-tone Forks. Interval 5(3): pp. 13+23 Winter 1986-87
BURT1.SCL 12 W. Burt's 13diatsub #1
BURT10.SCL 12 W. Burt's 19enhsub #10
BURT11.SCL 12 W. Burt's 19enhharm #11
BURT12.SCL 12 W. Burt's 19diatharm #12
BURT13.SCL 12 W. Burt's 23diatsub #13
BURT14.SCL 12 W. Burt's 23enhsub #14
BURT15.SCL 12 W. Burt's 23enhharm #15
BURT16.SCL 12 W. Burt's 23diatharm #16
BURT2.SCL 12 W. Burt's 13enhsub #2
BURT3.SCL 12 W. Burt's 13enhharm #3
BURT4.SCL 12 W. Burt's 13diatharm #4, see his post 3/30/94 in Tuning Digest #57
BURT5.SCL 12 W. Burt's 17diatsub #5
BURT6.SCL 12 W. Burt's 17enhsub #6
BURT7.SCL 12 W. Burt's 17enhharm #7
BURT8.SCL 12 W. Burt's 17diatharm #8
BURT9.SCL 12 W. Burt's 19diatsub #9
BYZ_PALACE.SCL 7 Byzantine Palace mode, 17-limit

- C -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
CAIRO.SCL 26 P.42, of d'Erlanger, vol.5. Congress of Arabic Music, Cairo, 1932
CANRIGHT.SCL 12 David Canright's piano tuning for "Canon for Seven Hands"
CARLOS_ALPHA.SCL 18 Wendy Carlos' Alpha scale with perfect fifth divided in nine
CARLOS_ALPHA2.SCL 36 Wendy Carlos' Alpha prime scale with perfect fifth divided by eightteen
CARLOS_BETA.SCL 22 Wendy Carlos' Beta scale with perfect fifth divided by eleven
CARLOS_BETA2.SCL 44 Wendy Carlos' Beta prime scale with perfect fifth divided by twentytwo
CARLOS_GAMMA.SCL 35 Wendy Carlos' Gamma scale with third divided by eleven or fifth by twenty
CARLOS_HARM.SCL 12 Carlos Harmonic, also Dan Schmidt Slendro-Pelog with 13,17,19,21,27
CARLOS_SUPER.SCL 12 Carlos Super Just
CARLSON.SCL 19 Brian Carlson's guitar scale (or 7 is 21/16 instead) fretted by Mark Rankin
CATLER.SCL 24 Catler 24-tone JI from "Over and Under the 13 Limit", 1/1 3(3)
CEB88F.SCL 13 88 cents steps with equal beating fifths
CEB88S.SCL 14 88 cents steps with equal beating sevenths
CEB88T.SCL 14 88 cents steps with equal beating 7/6 thirds
CET105.SCL 13 Equal temperament with very good 6/5 and 13/8
CET133.SCL 13 13th root of e
CET140.SCL 24 24th root of 7
CET148.SCL 21 21th root of 6, Moreno's C-21
CET152.SCL 13 13th root of pi
CET158.SCL 12 12th root of 3, Moreno's A-12, see dissertation "Embedding Equal Pitch Spaces..
CET159.SCL 8 4e-th root of e. e-th root of e is highest x-th root of x
CET166.SCL 3 3rd root of 4/3
CET173.SCL 11 11th root of 3, Moreno's A-11
CET181.SCL 16 6.625 tET. The 16/3 is the so-called Kidjel Ratio promoted by Kidjel in 60's
CET182.SCL 17 17th root of 6, Moreno's C-17
CET195.SCL 7 7th root of 11/5
CET222.SCL 14 14th root of 6, Moreno's C-14
CET258.SCL 12 12th root of 6, Moreno's C-12
CET29.SCL 95 95th root of 5
CET39.SCL 49 49th root of 3
CET39A.SCL 31 31-tET with least squares octave; equal weight to 5/4, 3/2, 7/4 and 2/1
CET39B.SCL 31 31-tET with l.s. 8/7, 5/4, 4/3, 3/2, 8/5, 7/4, 2/1; equal weights
CET39C.SCL 31 10th root of 5/4
CET45.SCL 11 11th root of 4/3
CET54.SCL 62 62nd root of 7
CET54A.SCL 101 101st root of 24
CET54B.SCL 35 35th root of 3 or shrunk 22-tET
CET55.SCL 51 51th root of 5
CET63.SCL 30 30th root of 3 or stretched 19-tET
CET63A.SCL 44 44th root of 5
CET79.SCL 24 24th root of 3, James Hefferman (1906).
CET80.SCL 35 35th root of 5
CET88.SCL 14 88 cents steps by Gary Morrison
CET88B.SCL 14 87.9745 cents steps. Least squares of 7/6, 11/9, 10/7, 3/2, 7/4.
CET88_APPR.SCL 22 88 cents scale approximated
CET90.SCL 17 Scale with limma steps
CET93.SCL 9 Tuning used in John Chowning's STRIA, 9th root of Phi
CET99.SCL 12 Scale with 18/17 steps
CHALMERS.SCL 19 Chalmers' 19-tone with more hexanies than Perrett's Tierce-Tone
CHALMERS_17.SCL 17 7-limit figurative scale, Chalmers '96 Adnexed S&H decads
CHALMERS_19.SCL 19 7-limit figurative scale. Reversed S&H decads
CHALMERS_CSURD.SCL 15 Combined Surd Scale, combination of Surd and Inverted Surd, JHC, 26-6-97
CHALMERS_ISURD.SCL 8 Inverted Surd Scale, of the form 4/(SQRT(N)+1, JHC, 26-6-97
CHALMERS_JI1.SCL 12 Based loosely on Wronski's and similar JI scales, May 2, 1997.
CHALMERS_JI2.SCL 12 Based loosely on Wronski's and similar JI scales, May 2, 1997.
CHALMERS_JI3.SCL 12 15 16 17 18 19 20 21 on 1/1, 15-20 on 3/2, May 2, 1997. See other scales
CHALMERS_JI4.SCL 12 15 16 17 18 19 20 on 1/1, same on 4/3, + 16/15 on 16/9
CHALMERS_SPON1.SCL 9 JC Spondeion, from discussions with George Kahrimanis about tritone of spondeion
CHALMERS_SPON2.SCL 9 JC Spondeion II, 10 May 1997. Various tunings for the parhypatai and hence trito
CHALMERS_SURD.SCL 8 Surd Scale, Surds of the form (SQRT(N)+1)/2, JHC, 26-6-97
CHALMERS_SURD2.SCL 40 Surd Scale, Surds of the form (SQRT(N)+1)/4
CHALUNG.SCL 11 Tuning of chalung from Tasikmalaya. "slendroid". 1/1=185 Hz
CHIMES.SCL 3 Heavenly Chimes
CHIN_5.SCL 5 Chinese pentatonic from Zhou period
CHIN_60.SCL 60 Chinese scale of fifths (the 60 lu")
CHIN_7.SCL 7 Chinese heptatonic scale and tritriadic of 64:81:96 triad
CHIN_BIANZHONG.SCL 12 Pitches of Bianzhong bells (Xinyang). 1/1=b, Liang Mingyue, 1975.
CHIN_BRONZE.SCL 7 Scale found on ancient Chinese bronze instrument 3rd c.BC & "Scholar's Lute"
CHIN_LU.SCL 12 Chinese Lu" scale by Huai-nan-dsi", Han era. Kurt Reinhard: Chinesische Musik
CHIN_LU2.SCL 12 Chinese Lu" (Lushi chunqiu, by Lu Buwei). Mingyue: Music of the billion, p.67
CHIN_LUSHENG.SCL 5 Observed tuning of a small Lusheng, 1/1=d, OdC '97
CHIN_PIPA.SCL 5 Observed tuning from Chinese balloon guitar (p'i-p'a), Ellis
CHIN_SHENG.SCL 7 Observed tuning from Chinese sheng or mouth organ
CHIN_SIEN-TSU.SCL 5 Observed tuning from Chinese tamboura (sien-tsu), Ellis
CHIN_SO-NA.SCL 7 Observed tuning from Chinese oboe (so-na), Ellis
CHIN_TI-TSU.SCL 7 Observed tuning from Chinese flute (ti-tsu), Ellis
CHIN_WANG-PO.SCL 7 Scale of Wang Po, 958 AD. H. Pischner: Musik in China, Berlin, 1955, p.20
CHIN_YANG-CHIN.SCL 7 Observed tuning from Chinese dulcimer (yang-chin), Ellis
CHIN_YUN-LO.SCL 7 Observed tuning from Chinese gong-chime (yu"n-lo), Ellis
CHOQUEL.SCL 12 Choquel/Barbour/Marpurg?
CHORDAL.SCL 40 Chordal Notes S&H
CHROM15.SCL 7 Tonos-15 Chromatic
CHROM15_INV.SCL 7 Inverted Chromatic Tonos-15 Harmonia
CHROM15_INV2.SCL 7 A harmonic form of the Chromatic Tonos-15 inverted
CHROM17.SCL 7 Tonos-17 Chromatic
CHROM17_CON.SCL 7 Conjunct Tonos-17 Chromatic
CHROM19.SCL 7 Tonos-19 Chromatic
CHROM19_CON.SCL 7 Conjunct Tonos-19 Chromatic
CHROM21.SCL 7 Tonos-21 Chromatic
CHROM21_INV.SCL 7 Inverted Chromatic Tonos-21 Harmonia
CHROM21_INV2.SCL 7 Inverted harmonic form of the Chromatic Tonos-21
CHROM23.SCL 7 Tonos-23 Chromatic
CHROM23_CON.SCL 7 Conjunct Tonos-23 Chromatic
CHROM25.SCL 7 Tonos-25 Chromatic
CHROM25_CON.SCL 7 Conjunct Tonos-25 Chromatic
CHROM27.SCL 7 Tonos-27 Chromatic
CHROM27_INV.SCL 7 Inverted Chromatic Tonos-27 Harmonia
CHROM27_INV2.SCL 7 Inverted harmonic form of the Chromatic Tonos-27
CHROM29.SCL 7 Tonos-29 Chromatic
CHROM29_CON.SCL 7 Conjunct Tonos-29 Chromatic
CHROM31.SCL 8 Tonos-31 Chromatic. Tone 24 alternates with 23 as MESE or A
CHROM31_CON.SCL 8 Conjunct Tonos-31 Chromatic
CHROM33.SCL 7 Tonos-33 Chromatic. A variant is 66 63 60 48
CHROM33_CON.SCL 7 Conjunct Tonos-33 Chromatic
CHROM_NEW.SCL 7 New Chromatic genus 4.5 + 9 + 16.5
CHROM_NEW2.SCL 7 New Chromatic genus 14/3 + 28/3 + 16 parts
CHROM_SOFT.SCL 7 100/81 Chromatic. This genus is a good approximation to the soft chromatic
CHROM_SOFT2.SCL 7 1:2 Soft Chromatic
CHROM_SOFT3.SCL 7 Soft chromatic genus is from K. Schlesinger's modified Mixolydian Harmonia
CIFARIELLO.SCL 15 F. Cifariello Ciardi, ICMC 86 Proc. 15-tone 5-limit tuning
CKRING1.SCL 13 Double-tie circular mirroring with common pivot of 4:5:6:7 = square 1 3 5 7
CKRING2.SCL 13 Double-tie circular mirroring with common pivot of 3:5:7:9
CLUSTER.SCL 13 13-tone 5-limit Tritriadic Cluster
CLUSTER6A.SCL 6 Six-Tone Triadic Cluster 4:5:6
CLUSTER6B.SCL 6 Six-Tone Triadic Cluster 4:6:5
CLUSTER6C.SCL 6 Six-Tone Triadic Cluster 3:4:5
CLUSTER6D.SCL 6 Six-Tone Triadic Cluster 3:5:4
CLUSTER6E.SCL 6 Six-Tone Triadic Cluster 5:6:8
CLUSTER6F.SCL 6 Six-Tone Triadic Cluster 5:8:6
CLUSTER6G.SCL 6 Six-Tone Triadic Cluster 4:5:7
CLUSTER6H.SCL 6 Six-Tone Triadic Cluster 4:7:5
CLUSTER6I.SCL 6 Six-Tone Triadic Cluster 5:6:7
CLUSTER6J.SCL 6 Six-Tone Triadic Cluster 5:7:6
CLUSTER8A.SCL 8 Eight-Tone Triadic Cluster 4:5:6
CLUSTER8B.SCL 8 Eight-Tone Triadic Cluster 4:6:5
CLUSTER8C.SCL 8 Eight-Tone Triadic Cluster 3:4:5
CLUSTER8D.SCL 8 Eight-Tone Triadic Cluster 3:5:4
CLUSTER8E.SCL 8 Eight-Tone Triadic Cluster 5:6:8
CLUSTER8F.SCL 8 Eight-Tone Triadic Cluster 5:8:6
CLUSTER8G.SCL 8 Eight-Tone Triadic Cluster 4:5:7
CLUSTER8H.SCL 8 Eight-Tone Triadic Cluster 4:7:5
CLUSTER8I.SCL 8 Eight-Tone Triadic Cluster 5:6:7
CLUSTER8J.SCL 8 Eight-Tone Triadic Cluster 5:7:6
COLLENGETTES.SCL 24 R.P. Collengettes, from p.23 of d'Erlanger, vol 5. 24 tone Arabic system
COLONNA1.SCL 12 Colonna 1
COLONNA2.SCL 12 Colonna 2
CONCERTINA.SCL 14 English Concertina, see Helmholtz, p 470. from Ellis
CONT_FRAC1.SCL 14 Continued fraction scale 1, see McLaren in Xenharmonikon 15, pp.33-38
CONT_FRAC2.SCL 15 Continued fraction scale 2, see McLaren in Xenharmonikon 15, pp.33-38
CORDIER.SCL 12 Serge Cordier, piano tuning, 1975 (Accord bien tempere et justesse orchestrale
CORNER11.SCL 15 Quadratic Corner 11-limit. Chalmers '96
CORNER13.SCL 21 Quadratic Corner 13-limit. Chalmers '96
CORNER17.SCL 28 Quadratic Corner 17-limit.
CORNER17A.SCL 42 Quadratic Corner 17 odd limit.
CORNER7.SCL 10 Quadratic corner 7-limit. Chalmers '96
CORNER9.SCL 14 First 9 harmonics of 5th through 9th harmonics
CORNERS11.SCL 29 Quadratic Corners 11-limit. Chalmers '96
CORNERS13.SCL 41 Quadratic Corners 13-limit. Chalmers '96
CORNERS7.SCL 19 Quadratic Corners 7-limit. Chalmers '96
COUL_12.SCL 12 Scale 1 5/4 3/2 2 successively split largest intervals by smallest interval
COUL_12A.SCL 12 Scale 1 6/5 3/2 2 successively split largest intervals by smallest interval
COUL_13.SCL 13 Symmetrical 13-tone 5-limit just system
COUL_20.SCL 20 Tuning for a 3-row symmetrical keyboard, Op de Coul, 1989
COUL_31.SCL 31 Op de Coul's 31-tone 5-limit just system
CPS_MCLAREN.SCL 15 2)12 [1,2,3,4,5,6,8,9,10,12,14,15] a degenerate CPS
CROSS2.SCL 9 Pusey's double 5-7 cross reduced by 3/1
CROSS2_5.SCL 9 double 3-5 cross reduced by 2/1
CROSS2_7.SCL 13 longer 3-5-7 cross reduced by 2/1
CROSS3.SCL 13 Pusey's triple 5-7 cross reduced by 3/1
CROSS_7.SCL 7 3-5-7 cross reduced by 2/1, quasi diatonic, similar to Zalzal's, Flynn Cohen
CROSS_72.SCL 13 double 3-5-7 cross reduced by 2/1
CROSS_7A.SCL 7 2-5-7 cross reduced by 3/1
CRUCIFORM.SCL 12 Cruciform Lattice

- D -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
DANIELOU5_53.SCL 53 Danielou's Harmonic Division in 5-limit, symmetrized
DANIELOU_53.SCL 53 Danielou's Harmonic Division of the Octave, see p. 153
DAN_SEMANTIC.SCL 35 The Semantic Scale, from Alain Danie'lou: "Se'mantique Musicale", 1967.
DARREG.SCL 19 This set of 19 ratios in 5-limit JI is for his megalyra family
DARREG_ENNEA.SCL 9 Ivor Darreg's Mixed Enneatonic, a mixture of chromatic and enharmonic
DARREG_GENUS.SCL 9 Ivor Darreg's Mixed JI Genus (Archytas Enh, Ptolemy Soft Chrom, Didymos Chrom
DARREG_GENUS2.SCL 9 Darreg's Mixed JI Genus 2 (Archytas Enharmonic and Chromatic Genera)
DAVID11.SCL 22 11-limit system from Gary David, 1967
DAVID7.SCL 12 Gary David's Constant Structure, 1967. A mode of Fokker's 7-limit scale
DEGUNG1.SCL 5 Gamelan Degung, Kabupaten Sukabumi. 1/1=363 Hz
DEGUNG2.SCL 5 Gamelan Degung, Kabupaten Bandung. 1/1=252 Hz
DEGUNG3.SCL 5 Gamelan Degung, Kabupaten Sumedang. 1/1=388.5 Hz
DEGUNG4.SCL 5 Gamelan Degung, Kasepuhan Cheribon. 1/1=250 Hz
DEGUNG5.SCL 5 Gamelan Degung, Kanoman Cheribon. 1/1=428 Hz
DEGUNG6.SCL 5 Gamelan Degung, Kacherbonan Cheribon. 1/1=426 Hz
DEKANY.SCL 10 2)5 Dekany 1.3.5.7.11 (1.3 tonic)
DEKANY2.SCL 10 3)5 Dekany 1.3.5.7.9 (1.3.5.7.9 tonic)
DEKANY3.SCL 10 3)5 Dekany 1 1/3 1/5 1/7 1/9
DEKANY_UNION.SCL 14 Union of 2)5 and 3)5 [ 1 3 5 7 9] dekanies
DE_CAUS.SCL 12 De Caus (a mode of Ellis's duodene)
DIACYCLE13.SCL 23 Diacycle on 20/13, 13/10; there are also nodes at 3/2, 4/3; 13/9, 18/13
DIAMOND15.SCL 59 15-limit Diamond + 2nd ratios. See Novaro, 1927, Sistema Natural...
DIAMOND17.SCL 43 17-limit Diamond
DIAMOND17A.SCL 55 17-limit, +9 Diamond
DIAMOND19.SCL 57 19-limit Diamond
DIAMOND9.SCL 19 9-limit Diamond
DIAMOND_CHESS.SCL 11 9-limit chessboard pattern diamond. OdC
DIAMOND_CHESS11.SCL 17 11-limit chessboard pattern diamond. OdC
DIAMOND_MOD.SCL 13 13-tone Octave Modular Diamond, based on Archytas's Enharmonic
DIAMOND_TETR.SCL 8 Tetrachord Modular Diamond based on Archytas's Enharmonic
DIAPHONIC_10.SCL 10 10-tone Diaphonic Cycle
DIAPHONIC_12.SCL 12 12-tone Diaphonic Cycle, conjunctive form on 3/2 and 4/3
DIAPHONIC_12A.SCL 12 2nd 12-tone Diaphonic Cycle, conjunctive form on 10/7 and 7/5
DIAPHONIC_5.SCL 5 D5-tone Diaphonic Cycle
DIAPHONIC_7.SCL 7 7-tone Diaphonic Cycle, disjunctive form on 4/3 and 3/2
DIAT13.SCL 7 This genus is from K.S's diatonic Hypodorian harmonia
DIAT15.SCL 8 Tonos-15 Diatonic and its own trite synemmenon Bb
DIAT15_INV.SCL 8 Inverted Tonos-15 Harmonia, a harmonic series from 15 from 30.
DIAT17.SCL 8 Tonos-17 Diatonic and its own trite synemmenon Bb
DIAT19.SCL 8 Tonos-19 Diatonic and its own trite synemmenon Bb
DIAT21.SCL 8 Tonos-21 Diatonic and its own trite synemmenon Bb
DIAT21_INV.SCL 8 Inverted Tonos-21 Harmonia, a harmonic series from 21 from 42.
DIAT23.SCL 8 Tonos-23 Diatonic and its own trite synemmenon Bb
DIAT25.SCL 8 Tonos-25 Diatonic and its own trite synemmenon Bb
DIAT27.SCL 8 Tonos-27 Diatonic and its own trite synemmenon Bb
DIAT27_INV.SCL 8 Inverted Tonos-27 Harmonia, a harmonic series from 27 from 54
DIAT29.SCL 8 Tonos-29 Diatonic and its own trite synemmenon Bb
DIAT31.SCL 8 Tonos-31 Diatonic. The disjunctive and conjunctive diatonic forms are the same
DIAT33.SCL 8 Tonos-33 Diatonic. The conjunctive form is 23 (Bb instead of B) 20 18 33/2
DIATRED11.SCL 7 Dorian mode of a diatonic genus with reduplicated 11/10
DIAT_CHROM.SCL 7 Diatonic- Chromatic, on the border between the chromatic and diatonic genera
DIAT_DIES2.SCL 7 Dorian Diatonic, 2 part Diesis
DIAT_DIES5.SCL 7 Dorian Diatonic, 5 part Diesis
DIAT_ENH.SCL 7 Diat. + Enharm. Diesis, Dorian Mode
DIAT_ENH2.SCL 7 Diat. + Enharm. Diesis, Dorian Mode 3 + 12 + 15 parts
DIAT_ENH3.SCL 7 Diat. + Enharm. Diesis, Dorian Mode, 15 + 3 + 12 parts
DIAT_ENH4.SCL 7 Diat. + Enharm. Diesis, Dorian Mode, 15 + 12 + 3 parts
DIAT_ENH5.SCL 7 Dorian Mode, 12 + 15 + 3 parts
DIAT_ENH6.SCL 7 Dorian Mode, 12 + 3 + 15 parts
DIAT_EQ.SCL 7 Equal Diatonic, Islamic form, similar to 11/10 x 11/10 x 400/363
DIAT_EQ2.SCL 7 Equal Diatonic, 11/10 x 400/363 x 11/10
DIAT_GOLD.SCL 7 Diatonic scale with ratio between whole and half tone the Golden Section
DIAT_HEMCHROM.SCL 7 Diat. + Hem. Chrom. Diesis, Another genus of Aristoxenos, Dorian Mode
DIAT_SMAL.SCL 7 "Smallest number" diatonic scale
DIAT_SOFCHROM.SCL 7 Diat. + Soft Chrom. Diesis, Another genus of Aristoxenos, Dorian Mode
DIAT_SOFT.SCL 7 Soft Diatonic genus 5 + 10 + 15 parts
DIAT_SOFT2.SCL 7 Soft Diatonic genus with equally divided Pyknon; Dorian Mode
DIDY_CHROM.SCL 7 Didymus Chromatic
DIDY_CHROM1.SCL 7 permuted Didymus Chromatic
DIDY_CHROM2.SCL 7 Didymos's Chromatic, 6/5 x 25/24 x 16/15
DIDY_CHROM3.SCL 7 Didymos's Chromatic, 25/24 x 16/15 x 6/5
DIDY_DIAT.SCL 7 Didymus Diatonic
DIDY_EN2.SCL 7 permuted Didymus Enharmonic
DIDY_ENH.SCL 7 Dorian mode of Didymos's Enharmonic
DIMTETA.SCL 7 A heptatonic form on the 9/7
DIMTETB.SCL 5 A pentatonic form on the 9/7
DIV_FIFTH1.SCL 5 Divided Fifth #1, From Schlesinger, see Chapter 8, p. 160
DIV_FIFTH2.SCL 5 Divided Fifth #2, From Schlesinger, see Chapter 8, p. 160
DIV_FIFTH3.SCL 5 Divided Fifth #3, From Schlesinger, see Chapter 8, p. 160
DIV_FIFTH4.SCL 5 Divided Fifth #4, From Schlesinger, see Chapter 8, p. 160
DIV_FIFTH5.SCL 5 Divided Fifth #5, From Schlesinger, see Chapter 8, p. 160
DKRING1.SCL 12 Double-tie circular mirroring of 4:5:6:7
DKRING2.SCL 12 Double-tie circular mirroring of 3:5:7:9
DODECENY.SCL 12 Degenerate eikosany 3)6 from 1.3.5.9.15.45 tonic 1.3.15
DORIAN_CHROM.SCL 24 Dorian Chromatic Tonos
DORIAN_CHROM2.SCL 7 Schlesinger's Dorian Harmonia in the chromatic genus
DORIAN_CHROMINV.SCL 7 A harmonic form of Schlesinger's Chromatic Dorian inverted
DORIAN_DIAT.SCL 24 Dorian Diatonic Tonos
DORIAN_DIAT2.SCL 8 Schlesinger's Dorian Harmonia, a subharmonic series through 13 from 22
DORIAN_DIATCON.SCL 7 A Dorian Diatonic with its own trite synemmenon replacing paramese
DORIAN_ENH.SCL 24 Dorian Enharmonic Tonos
DORIAN_ENH2.SCL 7 Schlesinger's Dorian Harmonia in the enharmonic genus
DORIAN_ENHINV.SCL 7 A harmonic form of Schlesinger's Dorian enharmonic inverted
DORIAN_INV.SCL 8 Inverted Schlesinger's Dorian Harmonia, a harmonic series from 11 from 22
DORIAN_PENT.SCL 7 Schlesinger's Dorian Harmonia in the pentachromatic genus
DORIAN_PIS.SCL 15 Diatonic Perfect Immutable System in the Dorian Tonos, a non-rep. 16 tone gamut
DORIAN_SCHL.SCL 12 Schlesinger's Dorian Piano Tuning (Sub 22)
DORIAN_TRI1.SCL 7 Schlesinger's Dorian Harmonia in the first trichromatic genus
DORIAN_TRI2.SCL 7 Schlesinger's Dorian Harmonia in the second trichromatic genus
DOWLAND.SCL 12 Dowland lute tuning
DUDON_A.SCL 7 Dudon Tetrachord A
DUDON_B.SCL 7 Dudon Tetrachord B
DUDON_DIAT.SCL 7 Dudon Neutral Diatonic
DUNCAN.SCL 12 Dudley Duncan's Superparticular Scale
DUODENARIUM.SCL 117 Ellis's Duodenarium : genus [3^12 5^8]
DUODENE.SCL 12 Ellis's Duodene : genus [33355]
DUODENE14-18-21.SCL 12 14-18-21 Duodene
DUODENE3-11_9.SCL 12 3-11/9 Duodene
DUODENE3-7.SCL 12 3-7 Duodene
DUODENE6-7-9.SCL 12 6-7-9 Duodene
DUODENE_MIN.SCL 12 Minor Duodene
DUODENE_ROT.SCL 12 Ellis's Duodene rotated : genus [33555]
DUODENE_SKEW.SCL 12 Rotated 6/5x3/2 duodene

- E -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
EFG333333333337.SCL 24 Genus [333333333337]
EFG333333355.SCL 24 Genus [333333355]
EFG33335.SCL 10 Genus [33335]
EFG3333555.SCL 20 Genus [3333555]
EFG33335555.SCL 25 Genus bis-ultra-chromaticum [33335555]
EFG333355577.SCL 60 Genus [333355577]
EFG33337.SCL 10 Genus [33337]
EFG3335.SCL 8 Genus diatonicum veterum correctum [3335]
EFG33355.SCL 12 Genus diatonico-chromaticum hodiernum correctum [33355]
EFG333555.SCL 16 Genus diatonico-hyperchromaticum [333555]
EFG33355555.SCL 24 Genus [33355555]
EFG333555777.SCL 64 Genus [333555777]
EFG333557.SCL 24 Genus diatonico-enharmonicum [333557]
EFG33357.SCL 16 Genus [33357]
EFG3335711.SCL 32 Genus [3 3 3 5 7 11], expanded hexany 1 3 5 7 9 11
EFG333577.SCL 24 Genus [333577]
EFG3337.SCL 8 Genus [3337]
EFG33377.SCL 12 Genus [33377]
EFG3355.SCL 9 Genus chromaticum veterum correctum [3355]
EFG33555.SCL 12 Genus bichromaticum [33555]
EFG335555577.SCL 45 Genus [335555577]
EFG33557.SCL 18 Genus chromatico-enharmonicum [33557]
EFG335577.SCL 27 Genus chromaticum septimis triplex [335577]
EFG3357.SCL 12 Genus enharmonicum vocale [3357]
EFG33577.SCL 18 Genus [33577]
EFG3377.SCL 9 Genus [3377]
EFG33777.SCL 12 Genus [33777]
EFG33777A.SCL 10 Genus [33777] with comma discarded which disappears in 31-tET
EFG3555.SCL 8 Genus enharmonicum veterum correctum [3555]
EFG35557.SCL 16 Genus [35557]
EFG3557.SCL 12 Genus enharmonicum instrumentale [3557]
EFG35577.SCL 18 Genus [35577]
EFG357.SCL 8 7-limit Octony. See Ch.6 p.118 an Euler Genus Musicum on white keys + Bb
EFG35711.SCL 16 Genus [3 5 7 11]
EFG3571113.SCL 32 Genus [3 5 7 11 13]
EFG3577.SCL 12 Genus [3577]
EFG35777.SCL 16 Genus [35777]
EFG35777A.SCL 14 Genus [35777] with comma discarded which disappears in 31-tET
EFG3777.SCL 8 Genus [3777]
EFG37777.SCL 10 Genus [37777]
EFG37777A.SCL 8 Genus [37777] with comma discarded that disappears in 31-tET
EFG55557.SCL 10 Genus [55557]
EFG5557.SCL 8 Genus [5557]
EFG55577.SCL 12 Genus [55577]
EFG5577.SCL 9 Genus [5577]
EFG55777.SCL 12 Genus [55777]
EFG577.SCL 6 Genus nonum [577]
EFG5777.SCL 8 Genus [5777]
EFG57777.SCL 10 Genus [57777]
EFG77777.SCL 6 Genus [77777]
EIKOSANY.SCL 20 3)6 1.3.5.7.9.11 Eikosany (1.3.5 tonic)
EKRING1.SCL 12 Single-tie circular mirroring of 3:4:5
EKRING2.SCL 12 Single-tie circular mirroring of 6:7:8
EKRING3.SCL 12 Single-tie circular mirroring of 4:5:7
EKRING4.SCL 12 Single-tie circular mirroring of 4:5:6
EKRING5.SCL 12 Single-tie circular mirroring of 3:5:7
EKRING6.SCL 12 Single-tie circular mirroring of 6:7:9
EKRING7.SCL 12 Single-tie circular mirroring of 5:7:9
ELLIS-EB.SCL 12 Ellis' new equal beating temperament for pianofortes (1885)
ELLIS.SCL 12 Alexander John Ellis' imitation equal temperament (1875)
ELLIS_24.SCL 24 from P 421 of Helmholtz, 24-tones of JI for 1 manual harmonium
ELLIS_HARM.SCL 12 Ellis's Just Harmonium
ENH14.SCL 7 14/11 Enharmonic
ENH15.SCL 7 Tonos-15 Enharmonic
ENH15_INV.SCL 7 Inverted Enharmonic Tonos-15 Harmonia
ENH15_INV2.SCL 7 Inverted harmonic form of the enharmonic Tonos-15
ENH17.SCL 7 Tonos-17 Enharmonic
ENH17_CON.SCL 7 Conjunct Tonos-17 Enharmonic
ENH19.SCL 7 Tonos-19 Enharmonic
ENH19_CON.SCL 7 Conjunct Tonos-19 Enharmonic
ENH2.SCL 7 1:2 Enharmonic. New genus 2 + 4 + 24 parts
ENH21.SCL 7 Tonos-21 Enharmonic
ENH21_INV.SCL 7 Inverted Enharmonic Tonos-21 Harmonia
ENH21_INV2.SCL 7 Inverted harmonic form of the enharmonic Tonos-21
ENH23.SCL 7 Tonos-23 Enharmonic
ENH23_CON.SCL 7 Conjunct Tonos-23 Enharmonic
ENH25.SCL 7 Tonos-25 Enharmonic
ENH25_CON.SCL 7 Conjunct Tonos-25 Enharmonic
ENH27.SCL 7 Tonos-27 Enharmonic
ENH27_INV.SCL 7 Inverted Enharmonic Tonos-27 Harmonia
ENH27_INV2.SCL 7 Inverted harmonic form of the enharmonic Tonos-27
ENH29.SCL 7 Tonos-29 Enharmonic
ENH29_CON.SCL 7 Conjunct Tonos-29 Enharmonic
ENH31.SCL 8 Tonos-31 Enharmonic. Tone 24 alternates with 23 as MESE or A
ENH31_CON.SCL 8 Conjunct Tonos-31 Enharmonic
ENH33.SCL 7 Tonos-33 Enharmonic
ENH33_CON.SCL 7 Conjunct Tonos-33 Enharmonic
ENH_INVCON.SCL 7 Inverted Enharmonic Conjunct Phrygian Harmonia
ENH_MOD.SCL 7 Enharmonic After Wilson's Purvi Modulations, See page 111
ENH_PERM.SCL 7 Permuted Enharmonic, After Wilson's Marwa Permutations, See page 110.
EPIMORE.SCL 40 Epimore (Scholz)
EPIMORE_ENH.SCL 7 New Epimoric Enharmonic, Dorian mode of the 4th new Enharmonic on Hofmann's list
ERATOS_CHROM.SCL 7 Dorian mode of Eratosthenes's Chromatic. same as Ptol. Intense Chromatic
ERATOS_DIAT.SCL 7 Dorian mode of Eratosthenes's Diatonic, Pythagorean
ERATOS_ENH.SCL 7 Dorian mode of Eratosthenes's Enharmonic
ERLANGEN.SCL 12 Revised Erlangen
ERLICH1.SCL 10 Asymmetrical Major decatonic mode of 22-tET, Paul Erlich
ERLICH2.SCL 10 Asymmetrical Minor decatonic mode of 22-tET, Paul Erlich
ERLICH3.SCL 10 Symmetrical Major decatonic mode of 22-tET, Paul Erlich
ERLICH4.SCL 10 Symmetrical Minor decatonic mode of 22-tET, Paul Erlich
ET-MIX24.SCL 180 Mix of all equal temperaments from 1-24 (= 13-24)
ET-MIX6.SCL 12 Mix of equal temperaments from 1-6 (= 4-6)
ET7A.SCL 7 7-tone equal temperament with pure fourth and fifth
ETHIOPIAN.SCL 12 Ethiopian Tunings from Fortuna
EULER.SCL 12 Euler (a mode of Ellis's duodene), genus [33355]
EULER_DIAT.SCL 8 Euler's genus diatonicum veterum correctum
EULER_ENH.SCL 7 Euler's Old Enharmonic, From Tentamen Novae Theoriae Musicae
EULER_GM.SCL 8 Euler's Genus Musicum, Octony based on Archytas's Enharmonic
EXP2.SCL 7 Two times expanded major triad
EXP3.SCL 30 Three times expanded major triad

- F -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
FACTORY.SCL 12 Equal beating temperament tuned by The Best Factory Tuners (1840)
FACTORY2.SCL 12 Exact values of equal beating temperament of Best Factory Tuners (1840)
FAREY3.SCL 5 Farey fractions between 0 and 1 until 3rd level, normalised by 2/1
FAREY4.SCL 9 Farey fractions between 0 and 1 until 4th level, normalised by 2/1
FAREY5.SCL 20 Farey fractions between 0 and 1 until 5th level, normalised by 2/1
FARNSWORTH.SCL 7 Farnsworth's scale
FINNAMORE.SCL 8 David J. Finnamore, Tuning List 9 May '97. Tetrachordal scale, 17/16x19/17x64/57
FINNAMORE_JC.SCL 7 Chalmers' modification of Finnamore. Tuning List 9-5-97 19/18 x 9/8 x 64/57
FISHER.SCL 12 Alexander Metcalf Fisher's modified meantone temperament
FISK-VOGEL.SCL 12 Modified meantone tuning of Fisk organ in Memorial Church at Stanford
FJ-10TET.SCL 10 Franck Jedrzejewski continued fractions approx. of 10-tet
FJ-11TET.SCL 11 Franck Jedrzejewski continued fractions approx. of 11-tet
FJ-12TET.SCL 12 Franck Jedrzejewski continued fractions approx. of 12-tet
FJ-13TET.SCL 13 Franck Jedrzejewski continued fractions approx. of 13-tet
FJ-14TET.SCL 14 Franck Jedrzejewski continued fractions approx. of 14-tet
FJ-15TET.SCL 15 Franck Jedrzejewski continued fractions approx. of 15-tet
FJ-16TET.SCL 16 Franck Jedrzejewski continued fractions approx. of 16-tet
FJ-17TET.SCL 17 Franck Jedrzejewski continued fractions approx. of 17-tet
FJ-18TET.SCL 18 Franck Jedrzejewski continued fractions approx. of 18-tet
FJ-19TET.SCL 19 Franck Jedrzejewski continued fractions approx. of 19-tet
FJ-20TET.SCL 20 Franck Jedrzejewski continued fractions approx. of 20-tet
FJ-21TET.SCL 21 Franck Jedrzejewski continued fractions approx. of 21-tet
FJ-22TET.SCL 22 Franck Jedrzejewski continued fractions approx. of 22-tet
FJ-23TET.SCL 23 Franck Jedrzejewski continued fractions approx. of 23-tet
FJ-24TET.SCL 24 Franck Jedrzejewski continued fractions approx. of 24-tet
FJ-26TET.SCL 26 Franck Jedrzejewski continued fractions approx. of 26-tet
FJ-2TET.SCL 2 Franck Jedrzejewski continued fractions approx. of 2-tet
FJ-30TET.SCL 30 Franck Jedrzejewski continued fractions approx. of 30-tet
FJ-31TET.SCL 31 Franck Jedrzejewski continued fractions approx. of 31-tet
FJ-36TET.SCL 36 Franck Jedrzejewski continued fractions approx. of 36-tet
FJ-3TET.SCL 3 Franck Jedrzejewski continued fractions approx. of 3-tet
FJ-41TET.SCL 41 Franck Jedrzejewski continued fractions approx. of 41-tet
FJ-42TET.SCL 42 Franck Jedrzejewski continued fractions approx. of 42-tet
FJ-43TET.SCL 43 Franck Jedrzejewski continued fractions approx. of 43-tet
FJ-4TET.SCL 4 Franck Jedrzejewski continued fractions approx. of 4-tet
FJ-53TET.SCL 53 Franck Jedrzejewski continued fractions approx. of 53-tet
FJ-54TET.SCL 54 Franck Jedrzejewski continued fractions approx. of 54-tet
FJ-55TET.SCL 55 Franck Jedrzejewski continued fractions approx. of 55-tet
FJ-5TET.SCL 5 Franck Jedrzejewski continued fractions approx. of 5-tet
FJ-60TET.SCL 60 Franck Jedrzejewski continued fractions approx. of 60-tet
FJ-66TET.SCL 66 Franck Jedrzejewski continued fractions approx. of 66-tet
FJ-6TET.SCL 6 Franck Jedrzejewski continued fractions approx. of 6-tet
FJ-72TET.SCL 72 Franck Jedrzejewski continued fractions approx. of 72-tet
FJ-78TET.SCL 78 Franck Jedrzejewski continued fractions approx. of 78-tet
FJ-7TET.SCL 7 Franck Jedrzejewski continued fractions approx. of 7-tet
FJ-84TET.SCL 84 Franck Jedrzejewski continued fractions approx. of 84-tet
FJ-8TET.SCL 8 Franck Jedrzejewski continued fractions approx. of 8-tet
FJ-90TET.SCL 90 Franck Jedrzejewski continued fractions approx. of 90-tet
FJ-96TET.SCL 96 Franck Jedrzejewski continued fractions approx. of 96-tet
FJ-9TET.SCL 9 Franck Jedrzejewski continued fractions approx. of 9-tet
FOGLIANO1.SCL 12 Fogliano 1
FOGLIANO2.SCL 12 Fogliano 2, also Mandelbaum
FOKKER-H.SCL 19 Fokker-H 5-limit per.bl. synt.comma&small diesis, KNAW B71, 1968
FOKKER-K.SCL 19 Fokker-K 5-limit per.bl. of 225/224 & 81/80 & 10976/10935, KNAW B71, 1968
FOKKER-L.SCL 19 Fokker-L 7-limit periodicity block 10976/10935 & 225/224 & 15625/15552, 1969
FOKKER-M.SCL 31 Fokker-M 7-limit periodicity block 81/80 & 225/224 & 1029/1024, KNAW B72, 1969
FOKKER-N.SCL 31 Fokker-N 7-limit periodicity block 81/80 & 2100875/2097152 & 1029/1024, 1969
FOKKER-P.SCL 31 Fokker-P 7-limit periodicity block 65625/65536 & 6144/6125 & 2401/2400, 1969
FOKKER-Q.SCL 53 Fokker-Q 7-limit per.bl. 225/224 & 4000/3969 & 6144/6125, KNAW B72, 1969
FOKKER-R.SCL 53 Fokker-R 7-limit per.bl. 4375/4374 & 65625/65536 & 6144/6125, 1969
FOKKER-S.SCL 53 Fokker-S 7-limit per.bl. 4375/4374 & 323/322 & 64827/65536, 1969
FOKKER_12.SCL 12 Fokker's 7-limit 12-tone just scale
FOKKER_12A.SCL 12 Fokker's 7-limit periodicity block of 2048/2025 & 3969/4000 & 225/224
FOKKER_12B.SCL 12 Fokker's 7-limit semitone scale KNAW B72, 1969
FOKKER_12C.SCL 12 Fokker's 7-limit complementary semitone scale, KNAW B72, 1969
FOKKER_22.SCL 22 Fokker's 22-tone periodicity block of 2048/2025 & 3125/3072. KNAW B71, 1968
FOKKER_22A.SCL 22 Fokker's 22-tone periodicity block of 2048/2025 & 2109375/2097152 = semicomma
FOKKER_31.SCL 31 Fokker's 31-tone just system
FOKKER_31A.SCL 31 Fokker's 31-tone first alternate septimal tuning
FOKKER_31B.SCL 31 Fokker's 31-tone second alternate septimal tuning
FOKKER_31C.SCL 31 Fokker's 31-tone periodicity block of 81/80 & 2109375/2097152 = semicomma
FOKKER_31D.SCL 31 Fokker's 31-tone periodicity block of 81/80 & Wurschmidt's comma
FOKKER_41.SCL 41 Fokker's 7-limit supracomma per.bl. 10976/10935 & 225/224 & 496125/262144
FOKKER_41A.SCL 41 Fokker's 41-tone periodicity block of schisma & 34171875/33554432
FOKKER_41B.SCL 41 Fokker's 41-tone periodicity block of schisma & 3125/3072
FOKKER_53.SCL 53 Fokker's 53-tone system, degree 37 has alternatives
FOKKER_53A.SCL 53 Fokker's 53-tone periodicity block of schisma & kleisma
FOKKER_53B.SCL 53 Fokker's 53-tone periodicity block of schisma & 2109375/2097152
FOKKER_AV.SCL 31 Fokker's suggestion for a shrinked octave by averaging approximations
FOKKER_SR.SCL 22 Fokker's 7-limit sruti scale, KNAW B72, 1969
FOKKER_SR2.SCL 22 Fokker's complementary 7-limit sruti scale, KNAW B72, 1969
FORSTER.SCL 32 Cris Forster's Chrysalis tuning, XH 7+8
FORTUNA.SCL 12 11-limit scale from Clem Fortuna

- G -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
GAMBIA.SCL 7 Mandinka balafon scale
GAMELAN.SCL 12 from Clem Fortuna out of Helmholtz, Slendro on black, F A B C E F as Pelog
GAMELAN_OM.SCL 12 Other Music gamelan (7 limit black keys)
GAMELAN_UDAN.SCL 12 Gamelan Udan Mas (approx) s6,p6,p7,s1,p1,s2,p2,p3,s3,p4,s5,p5
GANASSI.SCL 12 Ganassi
GARCIA.SCL 29 Linear 29-tone scale by Jose L. Garcia, 1988 15/13-52/45 alternating
GENOVESE.SCL 65 Denny Genovese's 65-note scale. 3/2=384 Hz
GENOVESE_38.SCL 38 Denny Genovese's 38-note scale. Harm 1..16 x Subh. 1..12
GF1-2.SCL 16 16-note scale with all possible quadruplets of 50 & 100 c. Galois Field GF(2)
GF2-3.SCL 16 16-note scale with all possible quadruplets of 60 & 90 c. Galois Field GF(2)
GILSON7.SCL 12 Gilson septimal
GILSON7A.SCL 12 Gilson septimal 2
GILSON_10.SCL 10 Gilson's 10-tone JI
GOLDEN_5.SCL 5 Golden pentatonic
GRADY.SCL 14 Kraig Grady, letter to Lou Harrison, published in 1/1 7 (1) 1991 p 5.
GRADY7.SCL 12 Kraig Grady's 7-limit "Centaur" scale, 1987. See Xenharmonikon 16
GRAMMATEUS.SCL 12 H. Grammateus (1518). Wolf fifths at B-F# and Bb-F
GRAUPNER.SCL 12 Johann Gottlieb Graupner's temperament (1819)
GUMBENG.SCL 5 Scale of gumbeng ensemble, Java. 1/1=440 Hz.
GUNKALI.SCL 7 Indian mode Gunkali, see Danielou: Intr. to the Stud. of Mus. Scales, p.175

- H -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
HALFEFG357777.SCL 10 Half genus 357777
HAMILTON.SCL 12 Elsie Hamilton's gamut, from article The Modes of Ancient Greek Music (1953)
HAMILTON_JC.SCL 12 Chalmers' permutation of Hamilton's gamut. Diatonic notes on white
HAMILTON_JC2.SCL 12 EH gamut, diatonic notes on white and drops 17 for 25. JC Dorian Harmonia on C
HANDBLUE.SCL 12 "Handy Blues" of Pitch Palette, 7-limit
HANDEL.SCL 12 Well temperament according to Georg Friedrich Ha"ndel's rules (c. 1780)
HANSON_19.SCL 19 JI version of Hanson's 19 out of 53-tET scale
HARM-DORENINV1.SCL 7 1st Inverted Schlesinger's Enharmonic Dorian Harmonia
HARM-DORINV1.SCL 7 1st Inverted Schlesinger's Chromatic Dorian Harmonia
HARM-LYDCHRINV1.SCL 7 1st Inverted Schlesinger's Chromatic Lydian Harmonia
HARM-LYDENINV1.SCL 7 1st Inverted Schlesinger's Enharmonic Lydian Harmonia
HARM-MIXOCHRINV1.SCL 7 1st Inverted Schlesinger's Chromatic Mixolydian Harmonia
HARM-MIXOENINV1.SCL 7 1st Inverted Schlesinger's Enharmonic Mixolydian Harmonia
HARM10.SCL 13 6/7/8/9/10 harmonics
HARM15.SCL 15 Fifth octave of the harmonic overtone series
HARM16-32.SCL 16 Harmonics 16-32
HARM16.SCL 30 First 16 harmonics and subharmonics
HARM1C-DORIAN.SCL 7 Harm1C-Dorian
HARM1C-HYPOD.SCL 8 HarmC-Hypodorian
HARM1C-HYPOL.SCL 8 HarmC-Hypolydian
HARM1C-LYDIAN.SCL 8 Harm1C-Lydian
HARM1C-MIX.SCL 7 Harm1C-Con Mixolydian
HARM1C-MIXOLYDIAN.SCL 7 Harm1C-Mixolydian
HARM24.SCL 12 Harmonics 12 to 24
HARM24_2.SCL 12 Harmonics 12 to 24, mode 9
HARM3.SCL 3 Third octave of the harmonic overtone series
HARM30.SCL 59 First 30 harmonics and subharmonics
HARM32-64.SCL 32 Harmonics 32-64
HARM37ODD.SCL 19 Odd harmonics until 37
HARM4.SCL 7 Fourth octave of the harmonic overtone series
HARM6-12.SCL 20 First 12 harmonics of 6th through 12th harmonics
HARM6.SCL 6 Harmonics 6-12
HARM60-30.SCL 12 Harmonics 60 to 30 (Perkis)
HARM7LIM.SCL 47 7-limit harmonics
HARM8.SCL 8 Harmonics 8-16, Badings: "lydo-mixolydisch"
HARM9.SCL 10 6/7/8/9 harmonics, First 9 overtones of 5th through 9th harmonics
HARMC-HYPOP.SCL 9 HarmC-Hypophrygian
HARMD-15.SCL 7 HarmD-15-Harmonia
HARMD-CONMIX.SCL 7 HarmD-ConMixolydian
HARMD-HYPOD.SCL 9 HarmD-Hypodorian
HARMD-HYPOL.SCL 8 HarmD-Hypolydian
HARMD-HYPOP.SCL 9 HarmD-Hypophrygian
HARMD-LYD.SCL 9 HarmD-Lydian
HARMD-MIX.SCL 7 HarmD-Mixolydian. Harmonics 7-14
HARMD-PHR.SCL 12 HarmD-Phryg (with 5 extra tones)
HARME-HYPOD.SCL 8 HarmE-Hypodorian
HARME-HYPOL.SCL 8 HarmE-Hypolydian
HARME-HYPOP.SCL 9 HarmE-Hypophrygian
HARMJC-15.SCL 12 Rationalized JC Sub-15 Harmonia on C. MD=15, No planetary assignment.
HARMJC-17-2.SCL 12 Rationalized JC Sub-17 Harmonia on C. MD=17, No planetary assignment.
HARMJC-17.SCL 12 Rationalized JC Sub-17 Harmonia on C. MD=17, No planetary assignment.
HARMJC-19-2.SCL 12 Rationalized JC Sub-19 Harmonia on C. MD=19, No planetary assignment.
HARMJC-19.SCL 12 Rationalized JC Sub-19 Harmonia on C. MD=19, No planetary assignment.
HARMJC-21.SCL 12 Rationalized JC Sub-21 Harmonia on C. MD=21, No planetary assignment.
HARMJC-23-2.SCL 12 Rationalized JC Sub-23 Harmonia on C. MD=23, No planetary assignment.
HARMJC-23.SCL 12 Rationalized JC Sub-23 Harmonia on C. MD=23, No planetary assignment.
HARMJC-25.SCL 12 Rationalized JC Sub-25 Harmonia on C. MD=25, No planetary assignment.
HARMJC-27.SCL 12 Rationalized JC Sub-27 Harmonia on C. MD=27, No planetary assignment.
HARMJC-HYPOD16.SCL 12 Rationalized JC Hypodorian Harmonia on C. Saturn Scale on C, MD=16. (Steiner)
HARMJC-HYPOL20.SCL 12 Rationalized JC Hypolydian Harmonia on C. Mars scale on C., MD=20
HARMJC-HYPOP18.SCL 12 Rationalized JC Hypophrygian Harmonia on C. Jupiter scale on C, MD =18
HARMJC-LYDIAN13.SCL 12 Rationalized JC Lydian Harmonia on C. Mercury scale on C, MD = 26 or 13
HARMJC-MIX14.SCL 12 Rationalized JC Mixolydian Harmonia on C. Moon Scale on C, MD = 14
HARMJC-PHRYG12.SCL 12 Rationalized JC Phrygian Harmonia on C. Venus scale on C, MD = 24 or 12
HARMONICAL.SCL 12 See pp 17 and 466-468 Helmholtz. lower 4 oct. Instr. designed & tuned by Ellis
HARMONICAL_UP.SCL 12 Upper 2 octaves of Ellis's Harmonical
HARM_BASTARD.SCL 7 Schlesinger's "Bastard" Hypodorian Harmonia & inverse 1)7 from 1.3.5.7.9.11.13
HARM_BASTINV.SCL 7 Inverse Schlesinger's "Bastard" Hypodorian Harmonia & 1)7 from 1.3.5.7.9.11.13
HARM_DARREG.SCL 24 Darreg Harmonics 4-15
HARM_MEAN.SCL 9 Harm. Mean 9-tonic 8/7 is HM of 1/1 and 4/3, etc.
HARRISON.SCL 12 John Harrison's temperament (1775), almost 3/10-comma
HARRISON_16.SCL 16 Lou Harrison 16-tone
HARRISON_5.SCL 5 From Lou Harrison, a pelog style pentatonic
HARRISON_5_1.SCL 5 From Lou Harrison, a pelog style pentatonic
HARRISON_5_2.SCL 5 From Lou Harrison, a pelog style pentatonic
HARRISON_5_3.SCL 5 From Lou Harrison, a pelog style pentatonic
HARRISON_5_4.SCL 5 From Lou Harrison, a pelog style pentatonic
HARRISON_8.SCL 8 Harrison 8-tone from Serenade for Guitar
HARRISON_DIAT.SCL 7 From Lou Harrison, a soft diatonic
HARRISON_JOY.SCL 6 Lou Harrison's Joyous 6
HARRISON_MID.SCL 7 Lou Harrison mid mode
HARRISON_MID2.SCL 7 Lou Harrison mid mode 2
HARRISON_MIN.SCL 5 From Lou Harrison, a symmetrical pentatonic with minor thirds
HARRISON_MIX1.SCL 5 A "mixed type" pentatonic, Lou Harrison
HARRISON_MIX2.SCL 5 A "mixed type" pentatonic, Lou Harrison
HARRISON_MIX3.SCL 5 A "mixed type" pentatonic, Lou Harrison
HARRISON_MIX4.SCL 5 A "mixed type" pentatonic, Lou Harrison
HAWKES.SCL 12 William Hawkes' modified 1/5-comma mean-tone (1807)
HEBDOME1.SCL 58 Wilson 1.3.5.7.9.11.13.15 hebdomekontany, 1.3.5.7 tonic
HELMHOLTZ.SCL 7 Helmholtz's Chromatic scale.
HELMHOLTZ_24.SCL 24 Simplified Helmholtz 24
HELMHOLTZ_PURE.SCL 24 Helmholtz's two-keyboard harmonium tuning untempered
HELMHOLTZ_TEMP.SCL 24 Helmholtz's two-keyboard harmonium tuning
HEM_CHROM.SCL 7 Hemiolic Chromatic genus has the strong or 1:2 division of the 12/11 pyknon
HEM_CHROM11.SCL 7 11'al Hemiolic Chromatic genus with a CI of 11/9, Winnington-Ingram
HEM_CHROM13.SCL 7 13'al Hemiolic Chromatic or neutral-third genus has a CI of 16/13
HEM_CHROM2.SCL 7 1:2 Hemiolic Chromatic genus 3 + 6 + 21 parts
HEPT_DIAMOND.SCL 25 Inverted-Prime Heptatonic Diamond based on Archytas's Enharmonic
HEPT_DIAMONDI.SCL 25 Prime-Inverted Heptatonic Diamond based on Archytas' Enharmonic
HEPT_DIAMONDP.SCL 27 Heptatonic Diamond based on Archytas's Enharmonic, 27 tones
HERF.SCL 14 Sims:Reflections on This and That, 1991. Used by Herf in Ekmelischer Gesang
HEXAGONAL13.SCL 13 Star hexagonal 13-tone scale
HEXAGONAL37.SCL 37 Star hexagonal 37-tone scale
HEXANIC.SCL 11 Composed of 1.3.5.45, 1.3.5.75, 1.3.5.9, and 1.3.5.25 hexanies
HEXANY.SCL 12 Hexany Cluster 1
HEXANY1.SCL 6 Two out of 1 3 5 7 hexany
HEXANY10.SCL 6 1.3.5.9 Hexany
HEXANY11.SCL 6 1.3.7.9 Hexany on 1.3
HEXANY12.SCL 6 3.5.7.9 Hexany on 3.9
HEXANY13.SCL 6 1.3.5.11 Hexany on 1.11
HEXANY14.SCL 6 5.11.13.15 Hexany (5.15), used in The Giving, by Stephen J. Taylor
HEXANY15.SCL 5 1.3.5.15 2)4 hexany (1.15 tonic) degenerate, symmetrical pentatonic
HEXANY16.SCL 5 1.3.9.27 Hexany, a degenerate pentatonic form
HEXANY17.SCL 5 1.5.25.125 Hexany, a degenerate pentatonic form
HEXANY18.SCL 5 1.7.49.343 Hexany, a degenerate pentatonic form
HEXANY19.SCL 5 1.5.7.35 Hexany, a degenerate pentatonic form
HEXANY2.SCL 12 Hexany Cluster 2
HEXANY20.SCL 6 3.5.7.105 Hexany
HEXANY21.SCL 6 3.5.9.135 Hexany
HEXANY21A.SCL 7 3.5.9.135 Hexany + 4/3. Is Didymos Diatonic tetrachord on 1/1 and inv. on 3/2
HEXANY22.SCL 5 1.11.121.1331 Hexany, a degenerate pentatonic form
HEXANY23.SCL 5 1.3.11.33 Hexany, degenerate pentatonic form
HEXANY24.SCL 5 1.5.11.55 Hexany, a degenerate pentatonic form
HEXANY25.SCL 5 1.7.11.77 Hexany, a degenerate pentatonic form
HEXANY26.SCL 5 1.9.11.99 Hexany, a degenerate pentatonic form
HEXANY3.SCL 12 Hexany Cluster 3
HEXANY4.SCL 12 Hexany Cluster 4
HEXANY49.SCL 6 1.3.21.49 2)4 hexany (1.21 tonic)
HEXANY5.SCL 12 Hexany Cluster 5
HEXANY6.SCL 12 Hexany Cluster 6
HEXANY7.SCL 12 Hexany Cluster 7
HEXANY8.SCL 12 Hexany Cluster 8
HEXANY9.SCL 6 1.3.5.7 Hexany on 5.7
HEXANYS.SCL 12 Hexanys 1 3 5 7 9
HEXANYS2.SCL 12 Hexanys 1 3 7 11 13
HEXANY_FLANK.SCL 12 Hexany Flanker, 7-limit, from Wilson
HEXANY_TETR.SCL 6 Complex 12 of p. 115, a hexany based on Archytas's Enharmonic
HEXANY_TRANS.SCL 6 Complex 1 of p. 115, a hexany based on Archytas's Enharmonic
HEXANY_TRANS2.SCL 6 Complex 2 of p. 115, a hexany based on Archytas's Enharmonic
HEXANY_TRANS3.SCL 6 Complex 9 of p. 115, a hexany based on Archytas's Enharmonic
HEXANY_U2.SCL 25 Hexany union = genus [335577] minus two corners
HEXANY_UNION.SCL 19 The union of all of the pitches of the 1.3.5.7 hexany on each tone as 1/1
HEXANY_UROT.SCL 24 Aggregate rotations of 1.3.5.7 hexany, 1.3 = 1/1
HIGGS.SCL 7 From Greg Higgs announcement of the formation of an Internet Tuning list
HIPKINS.SCL 7 Hipkins' Chromatic
HIRAJOSHI.SCL 5 Observed Japanese pentatonic koto scale
HIRAJOSHI2.SCL 5 Another Japanese pentatonic koto scale
HOFMANN1.SCL 7 Hofmann's Enharmonic #1, Dorian mode
HOFMANN2.SCL 7 Hofmann's Enharmonic #2, Dorian mode
HOFMANN_CHROM.SCL 7 Hofmann's Chromatic
HOLDER.SCL 12 William Holder's equal beating meantone temperament (1694). 3/2 beats 2.8 Hz
HOLDER2.SCL 12 Holder's irregular e.b. temperament with improved Eb and G#
HO_MAI_NHI.SCL 5 Ho Mai Nhi (Nam Hue) dan tranh scale, Vietnam
HUMMEL.SCL 12 Johann Nepomuk Hummel's quasi-equal temperament (1829)
HUMMEL2.SCL 12 Johann Nepomuk Hummel's temperament according to the second bearing plan
HUSMANN.SCL 6 Tetrachord division according to Husmann
HYPER_ENH.SCL 7 13/10 HyperEnharmonic. This genus is at the limit of usable tunings
HYPER_ENH2.SCL 7 Hyperenharmonic genus from Kathleen Schlesinger's enharmonic Phrygian Harmonia
HYPODORIAN_PIS.SCL 15 Diatonic Perfect Immutable System in the Hypodorian Tonos
HYPOD_CHROM.SCL 12 Hypodorian Chromatic Tonos
HYPOD_CHROM2.SCL 7 Schlesinger's Chromatic Hypodorian Harmonia
HYPOD_CHROMENH.SCL 7 Schlesinger's Hypodorian Harmonia in a mixed chromatic-enharmonic genus
HYPOD_CHROMINV.SCL 7 A harmonic form of Schlesinger's Chromatic Hypodorian Inverted
HYPOD_DIAT.SCL 12 Hypodorian Diatonic Tonos
HYPOD_DIAT2.SCL 8 Schlesinger's Hypodorian Harmonia, a subharmonic series through 13 from 16
HYPOD_DIATCON.SCL 7 A Hypodorian Diatonic with its own trite synemmenon replacing paramese
HYPOD_DIATINV.SCL 9 Inverted Schlesinger's Hypodorian Harmonia, a harmonic series from 8 from 16
HYPOD_ENH.SCL 12 Hypodorian Enharmonic Tonos
HYPOD_ENHINV.SCL 7 Inverted Schlesinger's Enharmonic Hypodorian Harmonia
HYPOD_ENHINV2.SCL 7 A harmonic form of Schlesinger's Hypodorian enharmonic inverted
HYPOD_INV.SCL 7 Inverted Schlesinger's Chromatic Hypodorian Harmonia
HYPOLYDIAN_PIS.SCL 15 The Diatonic Perfect Immutable System in the Hypolydian Tonos
HYPOL_CHROM.SCL 8 Schlesinger's Hypolydian Harmonia in the chromatic genus
HYPOL_CHROMINV.SCL 8 Inverted Schlesinger's Chromatic Hypolydian Harmonia
HYPOL_CHROMINV2.SCL 7 harmonic form of Schlesinger's Chromatic Hypolydian inverted
HYPOL_CHROMINV3.SCL 7 A harmonic form of Schlesinger's Chromatic Hypolydian inverted
HYPOL_DIAT.SCL 8 Schlesinger's Hypolydian Harmonia, a subharmonic series through 13 from 20
HYPOL_DIATCON.SCL 7 A Hypolydian Diatonic with its own trite synemmenon replacing paramese
HYPOL_DIATINV.SCL 8 Inverted Schlesinger's Hypolydian Harmonia, a harmonic series from 10 from 20
HYPOL_ENH.SCL 8 Schlesinger's Hypolydian Harmonia in the enharmonic genus
HYPOL_ENHINV.SCL 8 Inverted Schlesinger's Enharmonic Hypolydian Harmonia
HYPOL_ENHINV2.SCL 7 A harmonic form of Schlesinger's Hypolydian enharmonic inverted
HYPOL_ENHINV3.SCL 7 A harmonic form of Schlesinger's Hypolydian enharmonic inverted
HYPOL_PENT.SCL 8 Schlesinger's Hypolydian Harmonia in the pentachromatic genus
HYPOL_TRI.SCL 8 Schlesinger's Hypolydian Harmonia in the first trichromatic genus
HYPOL_TRI2.SCL 8 Schlesinger's Hypolydian Harmonia in the second trichromatic genus
HYPOPHRYG_PIS.SCL 15 The Diatonic Perfect Immutable System in the Hypophrygian Tonos
HYPOP_CHROM.SCL 12 Hypophrygian Chromatic Tonos
HYPOP_CHROMENH.SCL 7 Schlesinger's Hypophrygian Harmonia in a mixed chromatic-enharmonic genus
HYPOP_CHROMINV.SCL 7 Inverted Schlesinger's Chromatic Hypophrygian Harmonia
HYPOP_CHROMINV2.SCL 7 A harmonic form of Schlesinger's Chromatic Hypophrygian inverted
HYPOP_DIAT.SCL 12 Hypophrygian Diatonic Tonos
HYPOP_DIAT2.SCL 8 Schlesinger's Hypophrygian Harmonia
HYPOP_DIATCON.SCL 7 A Hypophrygian Diatonic with its own trite synemmenon replacing paramese
HYPOP_DIATINV.SCL 8 Inverted Schlesinger's Hypophrygian Harmonia, a harmonic series from 9 from 18
HYPOP_ENH.SCL 12 Hypophrygian Enharmonic Tonos
HYPOP_ENHINV.SCL 7 Inverted Schlesinger's Enharmonic Hypophrygian Harmonia
HYPOP_ENHINV2.SCL 7 A harmonic form of Schlesinger's Hypophrygian enharmonic inverted
HYPO_CHROM.SCL 12 Hypolydian Chromatic Tonos
HYPO_DIAT.SCL 12 Hypolydian Diatonic Tonos
HYPO_ENH.SCL 12 Hypolydian Enharmonic Tonos

- I -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
IIVV17.SCL 21 17-limit IIVV
IND-HRDAYA1.SCL 12 From Hrdayakautaka of Hrdaya Narayana (17th c) Bhatkande's interpretation
IND-HRDAYA2.SCL 12 From Hrdayakautaka of Hrdaya Narayana (17th c) Levy's interpretation
INDIAN-DK.SCL 9 Raga Darbari Kanada
INDIAN-ELLIS.SCL 22 Ellis's Indian Chromatic, theoretical #74 of App.XX, p.517 of Helmholtz
INDIAN-ERLICH.SCL 22 Indian shrutis Paul Erlich proposal
INDIAN-HAHN.SCL 22 Indian shrutis Paul Hahn proposal
INDIAN-INVROT.SCL 12 Inverted and rotated North Indian gamut
INDIAN-MAGRAMA.SCL 7 Indian mode Ma-grama (Sa Ri Ga Ma Pa Dha Ni Sa)
INDIAN-NEWBENGALI.SCL 22 Modern Bengali scale,S.M. Tagore: The mus. scales of the Hindus,Calcutta 1884
INDIAN-OLD2ELLIS.SCL 22 Ellis Old Indian Chrom2, Helmholtz, p. 517. This is a 4 cent appr. to #73
INDIAN-OLDELLIS.SCL 22 Ellis Old Indian Chromatic, Helmholtz, p. 517. This is a 0.5 cent appr. to #73
INDIAN-PARTCH.SCL 22 Partch's Indian Chromatic, Exposition of Monophony, 1933.
INDIAN-PERK.SCL 22 Indian 22 Perkis
INDIAN-RAJA.SCL 6 A folk scale from Rajasthan, India
INDIAN-SAGRAMA.SCL 7 Indian mode Sa-grama (Sa Ri Ga Ma Pa Dha Ni Sa), inverse of Didymus' diatonic
INDIAN-SRUTIHARM.SCL 22 B. Chaitanya Deva's sruti harmonium. The Music of India, 1981, p. 109
INDIAN-SRUTIVINA.SCL 22 Raja S.M. Tagore's sruti vina, measured by Ellis and Hipkins, 1886. 1/1=241.2
INDIAN-SRUTIVINA2.SCL 22 S. Ramanathan's sruti vina, 1973. In B.C. Deva, The Music of India, p. 110
INDIAN-VINA.SCL 12 Observed South Indian tuning of a vina, Ellis
INDIAN-VINA2.SCL 24 Observed tuning of old vina in Tanjore Palace, Ellis and Hipkins. 1/1=210.7 Hz
INDIAN-VINA3.SCL 12 Tuning of K.S. Subramanian's vina (1983)
INDIAN-VINARAT.SCL 22 S.M. Tagore's sruti vina, rationalised OdC. 1/1=241.2 Hz
INDIAN.SCL 22 Indian shruti scale
INDIAN2.SCL 22 Indian shruti scale with tritone 64/45 schisma lower (Mr.Devarajan, Madurai)
INDIAN3.SCL 22 Indian shruti scale with 32/31 and 31/16 and tritone schisma lower
INDIAN_12.SCL 12 North Indian Gamut, modern Hindustani gamut out of 22 or more shrutis
INDIAN_12C.SCL 12 Carnatic gamut. Kuppuswami: Carnatic music and the Tamils, p. v
INDIAN_A.SCL 7 One observed indian mode
INDIAN_B.SCL 7 Observed Indian mode
INDIAN_C.SCL 7 Observed Indian mode
INDIAN_CMP.SCL 22 Shruti scale with a more compact lattice, OdC
INDIAN_D.SCL 7 Indian D (Ellis, correct)
INDIAN_E.SCL 7 Observed Indian mode
INDIAN_RAT.SCL 22 Indian Raga, From Fortuna, after Helmholtz, ratios by JC
INDIAN_ROT.SCL 12 Rotated North Indian Gamut
IONIC.SCL 7 Ancient greek Ionic
IRAN_DIAT.SCL 7 Iranian Diatonic from Dariush Anooshfar, Safi-a-ddin Armavi's scale from 125 ET
IRAQ.SCL 8 Iraq 8-tone scale, Ellis
ISFAHAN_5.SCL 5 Isfahan (IG #2, DF #8), from Rouanet
ITER_FIFTH.SCL 10 Iterated 3/2 Scale, IE=3/2, PD=3, SD=2

- J -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
JANKE1.SCL 12 Rainer Janke, Temperatur I
JANKE2.SCL 12 Rainer Janke, Temperatur II
JANKE3.SCL 12 Rainer Janke, Temperatur III
JANKE4.SCL 12 Rainer Janke, Temperatur IV
JANKE5.SCL 12 Rainer Janke, Temperatur V
JANKE6.SCL 12 Rainer Janke, Temperatur VI
JANKE7.SCL 12 Rainer Janke, Temperatur VII
JEMBLUNG1.SCL 5 Scale of bamboo gamelan jemblung from Kalijering, slendro-like. 1/1=590 Hz.
JEMBLUNG2.SCL 5 Bamboo gamelan jemblung at Royal Batavia Society. 1/1=504 Hz.
JI-RSR_12.SCL 12 RSR - 7 limit JI
JI_12.SCL 12 Basic JI with 7-limit tritone
JI_13.SCL 13 5-limit 12-tone symmetrical scale with two tritones
JI_16.SCL 16 7-limit rational interpretation of 16-tET. OdC
JI_17.SCL 17 3 and 7 prime rational interpretation of 17-tET. OdC
JI_19.SCL 19 5-limit 19-tone scale
JI_20.SCL 20 3 and 7 prime rational interpretation of 20-tET. OdC
JI_22.SCL 22 5-limit 22-tone scale
JI_22A.SCL 22 11-limit rational interpretation of 22-tET, Bill Alves, tuning list 9-1-98
JI_22B.SCL 22 3,5,11-prime rational interpretation of 22-tET
JI_22C.SCL 22 31-limit rational interpretation of 22-tET, Marion McCoskey
JI_22D.SCL 22 7-limit rational interpretation of 22-tET, OdC
JI_31.SCL 31 7-limit 31-tone scale. OdC
JI_34.SCL 34 5-limit 34-tone scale. OdC
JI_34A.SCL 34 5-limit parallelepiped 34-tone scale. OdC
JI_53.SCL 53 7-limit 53-tone scale. OdC
JI_53A.SCL 53 7-limit 53-tone scale. OdC
JI_7.SCL 7 7-limit rational interpretation of 7-tET. OdC
JOHNSTON.SCL 12 Ben Johnston's combined otonal-utonal scale
JOHNSTON_21.SCL 21 Johnston 21-note just enharmonic scale
JOHNSTON_22.SCL 22 Johnston 22-note scale from end of string quartet nr. 4
JOHNSTON_25.SCL 25 Johnston 25-note just enharmonic scale
JORGENSEN.SCL 12 Jorgensen's 5&7 temperament
JOUSSE.SCL 12 Temperament of Jean Jousse (1832)
JOUSSE2.SCL 12 Jean Jousse's quasi-equal temperament
JUST5_31.SCL 31 A just 5-limit 31-tone scale
JUST7_12.SCL 12 7-limit 12 tone scale
JUST7_31.SCL 31 A just 7-limit 31-tone scale

- K -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
KANZELMEYER_11.SCL 11 Bruce Kanzelmeyer, 11 harmonics from 16 to 32. Base 388.3614815 Hz
KANZELMEYER_18.SCL 18 Bruce Kanzelmeyer, 18 harmonics from 32 to 64. Base 388.3614815 Hz
KANZELMEYER_32.SCL 32 Bruce Kanzelmeyer, 32 harmonics from 32 to 64. Base 388.3614815 Hz
KAYOLONIAN.SCL 19 19-tone 5-limit scale of the Kayenian Imperium on Kayolonia (reeks van Sjauriek)
KAYOLONIANA.SCL 19 Amendment by Rasch of Kayolonian scale's note 9
KAYOLONIAN_12.SCL 12 See Barnard: De Keiaanse Muziek, p. 11. (uitgebreide reeks)
KAYOLONIAN_40.SCL 40 See Barnard: De Keiaanse Muziek
KAYOLONIAN_F.SCL 9 Kayolonian scale F
KAYOLONIAN_P.SCL 9 Kayolonian scale P
KAYOLONIAN_S.SCL 9 Kayolonian scale S
KAYOLONIAN_T.SCL 9 Kayolonian scale T
KAYOLONIAN_Z.SCL 9 Kayolonian scale Z
KELLETAT.SCL 12 Herbert Kelletat's Bach-tuning (1967)
KELLNER.SCL 12 Herbert Anton Kellner's Bach tuning. 5 1/5 Pyth. comma and 7 pure fifths
KEPLER1.SCL 12 Kepler 1
KEPLER2.SCL 12 Kepler 2
KILROY.SCL 12 Kilroy
KIMBALL.SCL 18 Buzz Kimball 18-note just scale
KIMBALL_53.SCL 53 Buzz Kimball 53-note just scale
KIRN-STAN.SCL 12 Kirnberger temperament improved by Charles Earl Stanhope (1806)
KIRNBERGER.SCL 12 Kirnberger's scale
KIRNBERGER1.SCL 12 Kirnberger 1
KIRNBERGER2.SCL 12 Kirnberger 2: 1/2 synt. comma
KIRNBERGER3.SCL 12 Kirnberger 3: 1/4 synt. comma
KLONARIS.SCL 12 Scale by Johnny Klonaris
KNOT.SCL 24 Smallest knot in 3-D, American Scientist, Nov-Dec '97 p506-510, trefoil knot
KOLINSKY.SCL 12 Kolinsky's 7th root of 3/2, also invented by Augusto Novaro
KOREA_5.SCL 5 According to Lou Harrison, called "the Delightful" in Korea
KORNERUP.SCL 19 Kornerup's temperament with fifth of (15 - sqrt 5) / 22 octaves
KORNERUP_11.SCL 11 Kornerup's doric minor
KRAEH_22.SCL 22 Kraehenbuehl & Schmidt 7-limit 22-tone tuning
KRAEH_22A.SCL 46 Kraehenbuehl & Schmidt 7-limit 22-tone tuning with "inflections" for some tones
KRAEH_22B.SCL 22 Best 22-tET approximation of KRAEH_22A.SCL
KRING1.SCL 7 Double-tie circular mirroring of 4:5:6 and Partch's 5-limit tonality Diamond
KRING1P3.SCL 35 Third carthesian power of double-tie mirroring of 4:5:6 with kleismas removed
KRING2.SCL 7 Double-tie circular mirroring of 6:7:8
KRING2P3.SCL 25 Third power of 6:7:8 mirroring with 1029/1024 intervals removed
KRING3.SCL 7 Double-tie circular mirroring of 3:5:7
KRING4.SCL 7 Double-tie circular mirroring of 4:5:7
KRING4P3.SCL 29 Third power of 4:5:7 mirroring with 3136/3125 intervals removed
KRING5.SCL 7 Double-tie circular mirroring of 5:7:9
KRING5P3.SCL 33 Third power of 5:7:9 mirroring with 250047/250000 intervals removed
KRING6.SCL 7 Double-tie circular mirroring of 6:7:9
KRING6P3.SCL 34 Third power of 6:7:9 mirroring with 118098/117649 intervals removed
KROUSSEAU.SCL 12 Kami Rousseau's tri-blues scale
KROUSSEAU2.SCL 12 19-tET version of Kami Rousseau's tri-blues scale
KUKUYA.SCL 4 African Kukuya Horns (aerophone, ivory, one note only)

- L -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
LAMBDOMA5_12.SCL 42 5x12 Lambdoma
LAMBDOMA_PRIM.SCL 56 Prime Lambdoma
LAMBERT.SCL 12 Lambert's temperament (1774) 1/7 Pyth. comma, 5 pure
LEBANON.SCL 7 Lebanese scale?
LEFTPISTOL.SCL 12 Left Pistol
LING-LUN.SCL 12 Scale of Ling Lun from C
LIU_MAJOR.SCL 7 Linus Liu's Major Scale, see his 1978 book, "Intonation Theory"
LIU_MEL.SCL 9 Linus Liu's Melodic Minor, use 5 and 7 descending and 6 and 8 ascending
LIU_MINOR.SCL 7 Linus Liu's Harmonic Minor
LIU_PENT.SCL 7 Linus Liu's "pentatonic scale"
LORINA.SCL 12 Lorina
LUCY.SCL 21 Charles Lucy's scale
LUCYTUN.SCL 31 LucyTuning from A
LUCY_19.SCL 19 Lucy's 19-tone scale
LUCY_7.SCL 7 Diatonic Lucy's scale
LYDIAN_CHROM.SCL 24 Lydian Chromatic Tonos
LYDIAN_CHROM2.SCL 7 Schlesinger's Lydian Harmonia in the chromatic genus
LYDIAN_CHROMINV.SCL 7 A harmonic form of Schlesinger's Chromatic Lydian inverted
LYDIAN_DIAT.SCL 24 Lydian Diatonic Tonos
LYDIAN_DIAT2.SCL 8 Schlesinger's Lydian Harmonia, a subharmonic series through 13 from 26
LYDIAN_DIATCON.SCL 7 A Lydian Diatonic with its own trite synemmenon replacing paramese
LYDIAN_DIATINV.SCL 8 Inverted Schlesinger's Lydian Harmonia, a harmonic series from 13 from 26
LYDIAN_ENH.SCL 24 Lydian Enharmonic Tonos
LYDIAN_ENH2.SCL 7 Schlesinger's Lydian Harmonia in the enharmonic genus
LYDIAN_ENHINV.SCL 7 A harmonic form of Schlesinger's Enharmonic Lydian inverted
LYDIAN_PENT.SCL 7 Schlesinger's Lydian Harmonia in the pentachromatic genus
LYDIAN_PIS.SCL 15 The Diatonic Perfect Immutable System in the Lydian Tonos
LYDIAN_TRI.SCL 7 Schlesinger's Lydian Harmonia in the first trichromatic genus
LYDIAN_TRI2.SCL 7 Schlesinger's Lydian Harmonia in the second trichromatic genus

- M -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
MAJOR_CLUS.SCL 12 Chalmers' Major Mode Cluster
MAJOR_WING.SCL 12 Chalmers' Major Wing with 7 major and 6 minor triads
MALCOLM.SCL 12 Malcolm's Monochord, also just C major in Yamaha synths (Wilkinson: Tuning In)
MALCOLM2.SCL 12 Malcolm 2
MALCOLMS.SCL 12 Symmetrical version of Malcolm's Monochord and Albion scale
MALCOLM_AP.SCL 12 Best approximations in mix of all ETs from 12-23 to Malcolm's Monochord
MALCOLM_ME.SCL 7 Malcolm's Mid-East
MAMBUTI.SCL 8 African Mambuti Flutes (aerophone; vertical wooden; one note each)
MANDELBAUM5.SCL 19 Mandelbaum's 5-limit 19-tone scale
MANDELBAUM7.SCL 19 Mandelbaum's 7-limit 19-tone scale
MARIMBA1.SCL 17 Marimba of the Bakwese, SW Belgian Congo (Zaire). 1/1=140.5 Hz
MARIMBA2.SCL 17 Marimba of the Bakubu, S. Belgian Congo (Zaire). 1/1=141.5 Hz
MARIMBA3.SCL 10 Marimba from the Yakoma tribe, Zaire. 1/1=185.5 Hz
MARION.SCL 19 scale with two different ET step sizes
MARION1.SCL 24 Marion's 7-limit Scale # 1
MARION10.SCL 25 Marion's 7-limit Scale # 10
MARION15.SCL 24 Marion's 7-limit Scale # 15
MARION19.SCL 25 Marion's 7-limit Scale # 19
MARION26.SCL 24 Marion's 7-limit Scale # 26
MARPURG-1.SCL 12 Other temperament by Marpurg, 3 fifths 1/3 Pyth. comma flat
MARPURG.SCL 12 Marpurg, Versuch ueber die musikalische Temperatur (1776), p. 153
MARPURG1.SCL 12 Marpurg 1
MARPURG2.SCL 12 Marpurg 2. Neue Methode (1790)
MARPURG3.SCL 12 Marpurg 3
MARPURG4.SCL 12 Marpurg 4, also Yamaha Pure Minor
MARSH.SCL 12 John Marsh's mean-tone temperament (1809)
MARSH2.SCL 12 John Marsh's quasi-equal temperament (1840)
MATRIX.SCL 12 matrix
MBIRA_BANDA.SCL 7 Mubayiwa Bandambira's tuning of keys R2-R9 from Berliner: The soul of mbira.
MBIRA_BANDA2.SCL 21 Mubayiwa Bandambira's Mbira DzaVadzimu tuning B1=114 Hz
MBIRA_GONDO.SCL 21 John Gondo's Mbira DzaVadzimu tuning B1=122 Hz
MBIRA_KUNAKA.SCL 7 John Kunaka's mbira tuning of keys R2-R9
MBIRA_KUNAKA2.SCL 21 John Kunaka's Mbira DzaVadzimu tuning B1=113 Hz
MBIRA_MUDE.SCL 21 Hakurotwi Mude's Mbira DzaVadzimu tuning B1=132 Hz
MBIRA_MUJURU.SCL 21 Ephat Mujuru's Mbira DzaVadzimu tuning, B1=106 Hz
MBIRA_ZIMB.SCL 7 Shona mbira scale
MBOKO_BOW.SCL 2 African Mboko Mouth Bow (chordophone, single string, plucked)
MBOKO_ZITHER.SCL 7 African Mboko Zither (chordophone; idiochordic palm fibre, plucked)
MCCLAIN.SCL 12 McClain's 12-tone scale, see page 119 of The Myth of Invariance
MCCLAIN_18.SCL 18 McClain's 18-tone scale, see page 143 of The Myth of Invariance
MCCLAIN_8.SCL 8 McClain's 8-tone scale, see page 51 of The Myth of Invariance
MCLAREN_HARM.SCL 11 from "Wilson part 9," claimed to be Schlesingers Dorian Enharmonic. Prov. unkn
MCLAREN_RATH1.SCL 12 McLaren Rat H1
MCLAREN_RATH2.SCL 12 McLaren Rat H2
MEAN10.SCL 12 3/10-comma mean-tone scale
MEAN11.SCL 12 3/11-comma mean-tone scale
MEAN13.SCL 12 3/13-comma mean-tone scale
MEAN14.SCL 12 3/14-comma mean-tone scale (Giordano Riccati, 1762)
MEAN14_15.SCL 15 15 of 3/14-comma mean-tone scale
MEAN14_19.SCL 19 19 of 3/14-comma mean-tone scale
MEAN14_7.SCL 7 Least squares appr. of 5L+2S to Ptolemy's Intense Diatonic scale
MEAN16.SCL 12 3/16-comma mean-tone scale
MEAN17.SCL 12 4/17-comma mean-tone scale, least square error of 5/4 and 3/2
MEAN17_17.SCL 17 4/17-comma mean-tone scale with split C#/Db, D#/Eb, F#/Gb, G#/Ab and A#/Bb
MEAN17_19.SCL 19 4/17-comma mean-tone scale, least square error of 5/4 and 3/2
MEAN18.SCL 12 5/18-comma mean-tone scale (Smith). Low beating minor triad
MEAN29.SCL 12 7/29-comma mean-tone scale, least square weights 3/2:4 5/4:1 6/5:1
MEAN2SEV.SCL 12 2/7-comma mean-tone scale. Zarlino's temperament (1558). See also meaneb371
MEAN2SEV_15.SCL 15 15 of 2/7-comma mean-tone scale
MEAN2SEV_19.SCL 19 19 of 2/7-comma mean-tone scale
MEAN2SEV_31.SCL 31 31 of 2/7-comma mean-tone scale
MEAN9.SCL 12 2/9-comma mean-tone scale
MEAN94.SCL 12 4/9-comma mean-tone scale
MEAN9_15.SCL 15 15 of 2/9-comma mean-tone scale
MEAN9_19.SCL 19 19 of 2/9-comma mean-tone scale
MEAN9_31.SCL 31 31 of 2/9-comma mean-tone scale
MEANEB1071.SCL 12 Equal beating 7/4 = 3/2 same.
MEANEB1071A.SCL 12 Equal beating 7/4 = 3/2 opposite.
MEANEB341.SCL 12 Equal beating 6/5 = 5/4 same. Almost 4/15 Pyth. comma
MEANEB371.SCL 12 Equal beating 6/5 = 3/2 same. Practically 2/7-comma (Zarlino)
MEANEB371A.SCL 12 Equal beating 6/5 = 3/2 opposite. Almost 2/5-comma
MEANEB381.SCL 12 Equal beating 6/5 = 8/5 same. Almost 1/7-comma
MEANEB451.SCL 12 Equal beating 5/4 = 4/3 same.
MEANEB471.SCL 12 Equal beating 5/4 = 3/2 same. Almost 5/17-comma
MEANEB471A.SCL 12 Equal beating 5/4 = 3/2 opposite. Almost 1/5 Pyth. Gottfried Keller (1707)
MEANEB472.SCL 12 Beating of 5/4 = twice 3/2 same. Almost 5/14-comma
MEANEB472A.SCL 12 Beating of 5/4 = twice 3/2 opposite. Almost 3/17-comma
MEANEB591.SCL 12 Equal beating 4/3 = 5/3 same.
MEANEB732.SCL 12 Beating of 3/2 = twice 6/5 same. Almost 4/13-comma
MEANEB732A.SCL 12 Beating of 3/2 = twice 6/5 opposite. Almost 1/3 Pyth. comma
MEANEB742.SCL 12 Beating of 3/2 = twice 5/4 same.
MEANEB742A.SCL 12 Beating of 3/2 = twice 5/4 opposite. Almost 3/13-comma, 3/14 Pyth. comma
MEANEB781.SCL 12 Equal beating 3/2 = 8/5 same.
MEANEB891.SCL 12 Equal beating 8/5 = 5/3 same. Almost 5/18-comma
MEANFIFTH.SCL 12 1/5-comma mean-tone scale
MEANFIFTH2.SCL 12 1/5-comma mean-tone by John Holden (1770)
MEANFIFTHEB.SCL 12 "1/5-comma" meantone with equal beating fifths
MEANFIFTH_19.SCL 19 19 of 1/5-comma mean-tone scale
MEANFIFTH_43.SCL 43 Complete 1/5-comma mean-tone scale
MEANHAR2.SCL 12 1/9-Harrison's comma mean-tone scale
MEANHAR3.SCL 12 1/11-Harrison's comma mean-tone scale
MEANHARRIS.SCL 12 1/10-Harrison's comma mean-tone scale
MEANHSEV.SCL 41 Mean-tone scale with harmonic seventh
MEANKLEIS.SCL 12 Mean-tone scale where the kleisma is made away
MEANLST357_19.SCL 19 19 of mean-tone scale, least square error in 3/2, 5/4 and 7/4
MEANPI.SCL 12 Pi-based meantone with Harrison's major third by Erv Wilson
MEANPI2.SCL 12 Pi-based meantone by Erv Wilson analogous to 22-tET
MEANPKLEIS.SCL 12 Positive mean-tone scale where the kleisma is made away
MEANQUAR.SCL 12 1/4-comma mean-tone scale. Pietro Aaron's temp. (1523). 6/5 beats twice 3/2
MEANQUAREB.SCL 12 "1/4-comma" meantone with equal beating fifths
MEANQUAR_15.SCL 15 1/4-comma mean-tone scale with split C#/Db, D#/Eb and G#/Ab
MEANQUAR_16.SCL 16 1/4-comma mean-tone scale with split C#/Db, D#/Eb, G#/Ab and A#/Bb
MEANQUAR_17.SCL 17 1/4-comma mean-tone scale with split C#/Db, D#/Eb, F#/Gb, G#/Ab and A#/Bb
MEANQUAR_19.SCL 19 19 of 1/4-comma mean-tone scale
MEANQUAR_27.SCL 27 27 of 1/4-comma mean-tone scale
MEANQUAR_31.SCL 31 31 of 1/4-comma mean-tone scale
MEANSABAT.SCL 12 1/9-schisma mean-tone scale Sa'bat-Garibaldi's
MEANSABAT_53.SCL 53 53-tone 1/9-schisma mean-tone scale
MEANSCHIS.SCL 12 1/8-schisma mean-tone scale Helmholtz
MEANSCHIS7.SCL 12 1/7-schisma mean-tone scale
MEANSEPT.SCL 12 Mean-tone scale with septimal diminished fifth
MEANSEPT2.SCL 19 Mean-tone scale with septimal neutral second
MEANSEPT3.SCL 41 Mean-tone scale with septimal minor third
MEANSEPT4.SCL 41 Mean-tone scale with septimal narrow fourth
MEANSEPT5.SCL 29 Mean-tone scale with septimal diminished fifth
MEANSEPT6.SCL 41 Mean-tone scale with septimal neutral second
MEANSEV.SCL 12 1/7-comma mean-tone scale
MEANSEV_19.SCL 19 19 of 1/7-comma mean-tone scale
MEANSIX53.SCL 12 1/6 of 53-tone comma mean-tone scale by William Hawkes (1808)
MEANSIXTH.SCL 12 1/6-comma mean-tone scale (tritonic temperament of Salinas)
MEANSIXTHEB.SCL 12 "1/6-comma" meantone with equal beating fifths
MEANSIXTH_19.SCL 19 19 of 1/6-comma mean-tone scale
MEANTHIRD.SCL 12 1/3-comma mean-tone scale
MEANTHIRD_19.SCL 19 Complete 1/3-comma mean-tone scale
MEANVAR1.SCL 12 Variable meantone 1: C-G-D-A-E 1/4, others 1/6
MEANVAR2.SCL 12 Variable meantone 2: C..E 1/4, 1/5-1/6-1/7-1/8 outward both directions
MEANVAR3.SCL 12 Variable meantone 3: C..E 1/4, 1/6 next, then Pyth.
MEANVAR4.SCL 12 Variable meantone 4: naturals 1/4-comma, accidentals Pyth.
MERCATOR.SCL 19 19 out of 53-tET, see Mandelbaum p. 331
MERRICK.SCL 12 A. Merrick's melodically tuned equal temperament (1811)
MERSEN-BAN.SCL 18 For keyboard designs of Mersenne (1636) & Ban (1639), 10 black and extra D
MERSEN_L1.SCL 12 Mersenne lute 1
MERSEN_L2.SCL 12 Mersenne lute 2
MERSEN_S1.SCL 12 Mersenne spinet 1
MERSEN_S2.SCL 12 Mersenne spinet 2
METAL-BAR.SCL 13 Metal bar scale. see McLaren, Xenharmonicon 15, pp.31-33
METAMEAN.SCL 12 Erv Wilson's Meta-Meantone tuning
MEYER.SCL 19 Max Meyer, see Doty, David, 1/1 August 1992 (7:4) p.1 and 10-14
MEYER_29.SCL 29 Max Meyer, see Doty, David, 1/1 August 1992 (7:4) p.1 and 10-14
MID_ENH1.SCL 7 Mid-Mode1 Enharmonic, permutation of Archytas's with the 5/4 lying medially
MID_ENH2.SCL 7 Permutation of Archytas' Enharmonic with the 5/4 medially and 28/27 first
MINOR_5.SCL 5 A minor pentatonic
MINOR_CLUS.SCL 12 Chalmers' Minor Mode Cluster, Genus [333335]
MINOR_WING.SCL 12 Chalmers' Minor Wing with 7 minor and 6 major triads
MIRING1.SCL 5 Gamelan Miring from Serdang wetan, Tangerang. 1/1=309.5 Hz
MIRING2.SCL 5 Gamelan Miring (Melog gender) from Serdang wetan
MISCA.SCL 9 21/20 x 20/19 x 19/18=7/6 7/6 x 8/7=4/3
MISCB.SCL 9 33/32 x 32/31x 31/27=11/9 11/9 x 12/11=4/3
MISCC.SCL 9 96/91 x 91/86 x 86/54=32/27. 32/27 x 9/8=4/3.
MISCD.SCL 9 27/26 x 26/25 x 25/24=9/8. 9/8 x 32/27=4/3.
MISCE.SCL 9 15/14 x 14/13 x 13/12=5/4. 5/4 x 16/15= 4/3.
MISCF.SCL 9 SupraEnh1
MISCG.SCL 9 SupraEnh 2
MISCH.SCL 9 SupraEnh 3
MIXED9_3.SCL 9 A mixture of the hemiolic chromatic and diatonic genera, 75 + 75 + 150 + 200 c
MIXED9_4.SCL 9 Mixed enneatonic 4, each "tetrachord" contains 67 + 67 + 133 + 233 cents.
MIXED9_5.SCL 9 A mixture of the intense chromatic genus and the permuted intense diatonic
MIXED9_6.SCL 9 Mixed 9-tonic 6, Mixture of Chromatic and Diatonic
MIXED9_7.SCL 9 Mixed 9-tonic 7, Mixture of Chromatic and Diatonic
MIXED9_8.SCL 9 Mixed 9-tonic 8, Mixture of Chromatic and Diatonic
MIXOL_CHROM.SCL 24 Mixolydian chromatic tonos
MIXOL_CHROM2.SCL 7 Schlesinger's Mixolydian Harmonia in the chromatic genus
MIXOL_CHROMINV.SCL 7 A harmonic form of Schlesinger's Chromatic Mixolydian inverted
MIXOL_DIAT.SCL 24 Mixolydian diatonic tonos
MIXOL_DIAT2.SCL 8 Schlesinger's Mixolydian Harmonia, a subharmonic series though 13 from 28
MIXOL_DIATCON.SCL 7 A Mixolydian Diatonic with its own trite synemmenon replacing paramese
MIXOL_DIATINV.SCL 7 A Mixolydian Diatonic with its own trite synemmenon replacing paramese
MIXOL_DIATINV2.SCL 8 Inverted Schlesinger's Mixolydian Harmonia, a harmonic series from 14 from 28
MIXOL_ENH.SCL 24 Mixolydian enharmonic tonos
MIXOL_ENH2.SCL 7 Schlesinger's Mixolydian Harmonia in the enharmonic genus
MIXOL_ENHINV.SCL 7 A harmonic form of Schlesinger's Mixolydian inverted
MIXOL_PENTA.SCL 7 Schlesinger's Mixolydian Harmonia in the pentachromatic genus
MIXOL_PIS.SCL 15 The Diatonic Perfect Immutable System in the Mixolydian Tonos
MIXOL_TRI1.SCL 7 Schlesinger's Mixolydian Harmonia in the first trichromatic genus
MIXOL_TRI2.SCL 7 Schlesinger's Mixolydian Harmonia in the second trichromatic genus
MOHAJIRA.SCL 7 Mohajira (Dudon) Two 3 + 4 + 3 Mohajira tetrachords, neutral diatonic
MOHA_BAYA.SCL 7 Mohajira + Bayati (Dudon) 3 + 4 + 3 Mohajira and 3 + 3 + 4 Bayati tetrachords
MOKHALIF.SCL 7 Iranian mode Mokhalif from C
MONTFORD.SCL 5 Montford's Spondeion, a mixed septimal and undecimal pentatonic
MONTVALLON.SCL 12 Montvallon
MORGAN.SCL 12 Augustus de Morgan's temperament (1843)
MOS11-34.SCL 11 Wilson 11 of 34-tET, G=9, Chain of minor & major thirds with Kleismatic fusion
MOS12-17.SCL 12 MOS 12 of 17, generator 7
MOS12-22.SCL 12 MOS 12 of 22, contains nearly just, recognizable diatonic, and pentatonic scales
MOS13-22.SCL 13 MOS 13 of 22, contains 5 and 9 tone MOS as well. G= 5 or 17
MOS15-22.SCL 15 MOS 15 in 22, contains 7 and 8 tone MOS as well. G= 3 or 19
MOSCOW.SCL 12 Charles E. Moscow's equal beating piano tuning (1895)
MUSAQA.SCL 7 Egyptian scale by Miha'il Musaqa
MUSAQA_24.SCL 24 from d'Erlanger vol.5, p.34, after Mih.a'il Mu^saqah, 1899, a Lebanese scholar
MYSTIC-R.SCL 5 Skriabin's mystic chord, op. 60 rationalised
MYSTIC.SCL 5 Skriabin's mystic chord, op. 60

- N -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
NEID-MAR-MORG.SCL 12 Neidhardt-Marpurg-de Morgan temperament (1858)
NEIDHARDT1.SCL 12 Neidhardt I temperament (1724)
NEIDHARDT2.SCL 12 Neidhardt II temperament (1724)
NEIDHARDT3.SCL 12 Neidhardt III temperament (1724)
NEIDHARDT4.SCL 12 Johann George Neidhardt's temperament no. 3 (1732). Altern. 1/6 P, 0 P
NEUTR_DIAT.SCL 7 Neutral Diatonic, 9 + 9 + 12 parts
NEUTR_PENT1.SCL 5 Quasi-Neutral Pentatonic 1, 15/13 x 52/45 in each trichord, after Dudon
NEUTR_PENT2.SCL 5 Quasi-Neutral Pentatonic 2, 15/13 x 52/45 in each trichord, after Dudon
NEW_DIATSOFT.SCL 7 New Soft Diatonic genus with equally divided Pyknon; Dorian Mode; 1:1 pyknon
NEW_ENH.SCL 7 New Enharmonic
NEW_ENH2.SCL 7 New Enharmonic P2
NOVARO.SCL 23 9-limit diamond with 21/20, 16/15, 15/8 and 40/21 added for evenness
NOVARO15.SCL 49 1-15 diamond, see Novaro, 1927, Sistema Natural base del Natural-Aproximado, p
NOVARO_EB.SCL 12 Novaro (?) equal beating 4/3 with strectched octave, almost pure 3/2

- O -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
OCTONY1.SCL 8 1)8 octony from 1.3.5.7.9.11.13.15, 1.3 tonic
OCTONY7.SCL 8 7)8 octony from 1.3.5.7.9.11.13.15, 1.3.5.7.9.11.13 tonic
OCTONY_MIN.SCL 8 Octony on Harmonic Minor, from Palmer on an album of Turkish music
OCTONY_ROT.SCL 8 Rotated Octony on Harmonic Minor
OCTONY_TRANS.SCL 8 Complex 10 of p. 115, an Octony based on Archytas's Enharmonic,
OCTONY_TRANS2.SCL 8 Complex 6 of p. 115 based on Archytas's Enharmonic, an Octony
OCTONY_TRANS3.SCL 8 Complex 5 of p. 115 based on Archytas's Enharmonic, an Octony
OCTONY_TRANS4.SCL 8 Complex 11 of p. 115, an Octony based on Archytas's Enharmonic, 8 tones
OCTONY_TRANS5.SCL 8 Complex 15 of p. 115, an Octony based on Archytas's Enharmonic, 8 tones
OCTONY_TRANS6.SCL 8 Complex 14 of p. 115, an Octony based on Archytas's Enharmonic, 8 tones
ODD1.SCL 12 ODD-1
ODD2.SCL 12 ODD-2
OETTINGEN.SCL 53 von Oettingen's Orthotonophonium tuning
OETTINGEN2.SCL 53 von Oettingen's Orthotonophonium tuning with central 1/1
OLDANI.SCL 12 This scale by Norbert L. Oldani appeared in Interval 5(3), p.10-11
OLYMPOS.SCL 5 Scale of ancient Greek flutist Olympos, 6th century BC as reported by Partch
OPELT.SCL 19 Opelt 19-tone

- P -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
PALACE.SCL 12 Palace mode+
PARACHROM.SCL 7 Parachromatic, new genus 5 + 5 + 20 parts
PAREJA.SCL 12 Ramis de Pareja
PARTCH-GREEK.SCL 12 Partch Greek scales from "Two Studies on Ancient Greek Scales" on black/white
PARTCH-UR.SCL 39 Ur-Partch curved keyboard, published in Interval
PARTCH_29.SCL 29 Partch/Ptolemy 11-limit Diamond
PARTCH_37.SCL 37 From "Exposition on Monophony" 1933, unp. see Ayers, 1/1 vol.9(2)
PARTCH_39.SCL 39 Ur-Partch Keyboard 39 tones, published in Interval
PARTCH_41.SCL 41 13-limit Diamond after Partch, Genesis of a Music, p 454, 2nd edition
PARTCH_41A.SCL 41 From "Exposition on Monophony" 1933, unp. see Ayers, 1/1 vol. 9(2)
PARTCH_43.SCL 43 Harry Partch's 43-tone pure scale
PARTCH_43A.SCL 43 From "Exposition on Monophony" 1933, unp. see Ayers, 1/1 vol. 9(2)
PELOG.SCL 7 Observed Javanese Pelog scale
PELOG1.SCL 7 Gamelan Saih pitu from Ksatria, Den Pasar (South Bali). 1/1=312.5 Hz
PELOG2.SCL 7 Bamboo gambang from Batu lulan (South Bali). 1/1=315 Hz
PELOG3.SCL 5 Gamelan Gong from Padangtegal, distr. Ubud (South Bali). 1/1=555 Hz
PELOG4.SCL 7 Hindu-Jav. demung, excavated in Banjarnegara. 1/1=427 Hz
PELOG5.SCL 7 Gamelan Kyahi Munggang (Paku Alaman, Jogja). 1/1=199.5 Hz
PELOG6.SCL 6 Gamelan Semar pegulingan, Ubud (S. Bali). 1/1=263.5 Hz
PELOG7.SCL 7 Gamelan Kantjilbelik (kraton Jogja). Measured by Surjodiningrat, 1972.
PELOG8.SCL 14 from William Malm: Music Cultures of the Pacific, the Near East and Asia.
PELOG_24.SCL 7 Subset of 24-tET (Sumatra?)
PELOG_A.SCL 7 Pelog, average class A. Kunst 1949
PELOG_ALV.SCL 7 Bill Alves JI Pelog, 1/1 vol. 9 no. 4, 1997. 1/1=293.33
PELOG_AV.SCL 7 "Normalised Pelog", Kunst, 1949. Average of 39 Javanese gamelans
PELOG_B.SCL 7 Pelog, average class B. Kunst 1949
PELOG_C.SCL 7 Pelog, average class C. Kunst 1949
PELOG_JC.SCL 12 Chalmers' Pelog/BH Slendro
PELOG_ME1.SCL 7 Gamelan Kyahi Kanyut Mesem pelog (Mangku Nagaran). 1/1=295 Hz
PELOG_ME2.SCL 7 Gamelan Kyahi Bermara (kraton Jogja). 1/1=290 Hz
PELOG_ME3.SCL 7 Gamelan Kyahi Pangasih (kraton Solo). 1/1=286 Hz
PELOG_PA.SCL 7 "Blown fifth" pelog, von Hornbostel, type a.
PELOG_PA2.SCL 7 New mixed gender Pelog
PELOG_PB.SCL 7 "Primitive" Pelog, step of blown semi-fourths, von Hornbostel, type b.
PELOG_PB2.SCL 7 "Primitive" Pelog, Kunst: Music in Java, p. 28
PELOG_SCHMIDT.SCL 7 Modern Pelog designed by Dan Schmidt and used by Berkeley Gamelan
PELOG_SELUN.SCL 11 Gamelan selunding from Kengetan, South Bali (Pelog), 1/1=141 Hz
PELOG_STR.SCL 9 JI Pelog with stretched 2/1 and extra tones between 2-3, 6-7. Wolf, XH 11, '87
PENTA1.SCL 12 Pentagonal scale 9/8 3/2 16/15 4/3 5/3
PENTA3.SCL 12 Pentagonal scale 7/4 4/3 15/8 32/21 6/5
PENTADEKANY.SCL 15 2)6 1.3.5.7.11.13 Pentadekany
PENTADEKANY2.SCL 15 2)6 1.3.5.7.9.11 Pentadekany (1.3 tonic)
PENTATRIAD.SCL 11 4:5:6 Pentatriadic scale
PENTATRIAD1.SCL 11 3:5:9 Pentatriadic scale
PERRETT-TT.SCL 19 Perrett Tierce-Tone
PERRETT.SCL 7 Perrett / Tartini / Pachymeres Enharmonic
PERRETT_14.SCL 14 Perrett's 14-tone system (subscale of tierce-tone)
PERRETT_CHROM.SCL 7 Perrett's Chromatic
PERSIAN.SCL 17 Persian Tar Scale, from Dariush Anooshfar, Internet Tuning List 2/10/94
PHI1_13.SCL 13 Pythagorean scale with (Phi + 1) / 2 as fifth
PHI_10.SCL 10 Pythagorean scale with Phi as fifth
PHI_13.SCL 13 Pythagorean scale with Phi as fifth
PHI_17.SCL 17 Phi + 1 equal division by 17. Brouncker, 1653
PHRYGIAN.SCL 12 Old Phrygian ??
PHRYGIAN_CHROM.SCL 24 Phrygian Chromatic Tonos
PHRYGIAN_DIAT.SCL 24 Phrygian Diatonic Tonos
PHRYGIAN_ENH.SCL 12 Phrygian Enharmonic Tonos
PHRYGIAN_HARM.SCL 12 Phrygian Harmonia-Aliquot 24 (flute tuning)
PHRYG_CHROMCON.SCL 7 Inverted Conjunct Chromatic Phrygian
PHRYG_CHROMCON2.SCL 7 Harmonic Conjunct Chromatic Phrygian
PHRYG_CHROMINV.SCL 7 Inverted Schlesinger's Chromatic Phrygian
PHRYG_DIAT.SCL 8 Schlesinger's Phrygian Harmonia, a subharmonic series through 13 from 24
PHRYG_DIATCON.SCL 7 A Phrygian Diatonic with its own trite synemmenon replacing paramese
PHRYG_DIATINV.SCL 8 Inverted Schlesinger's Phrygian Harmonia, a harmonic series from 12 from 24
PHRYG_ENH.SCL 7 Schlesinger's Phrygian Harmonia in the enharmonic genus
PHRYG_ENHCON.SCL 7 Harmonic Conjunct Enharmonic Phrygian
PHRYG_ENHINV.SCL 7 Inverted Schlesinger's Enharmonic Phrygian Harmonia
PHRYG_ENHINV2.SCL 7 Inverted harmonic form of Schlesinger's Enharmonic Phrygian
PHRYG_INV.SCL 7 Inverted Schlesinger's Chromatic Phrygian Harmonia
PHRYG_INVCON.SCL 7 Inverted Conjunct Phrygian Harmonia with 17, the local Trite Synemmenon
PHRYG_PENTA.SCL 7 Schlesinger's Phrygian Harmonia in the pentachromatic genus
PHRYG_PIS.SCL 15 The Diatonic Perfect Immutable System in the Phrygian Tonos
PHRYG_TRI1.SCL 7 Schlesinger's Phrygian Harmonia in the chromatic genus
PHRYG_TRI2.SCL 7 Schlesinger's Phrygian Harmonia in the second trichromatic genus
PHRYG_TRI3.SCL 7 Schlesinger's Phrygian Harmonia in the first trichromatic genus
PIANO.SCL 19 Enhanced Piano Total Gamut, see 1/1 vol. 8/2 January 1994
PIANO7.SCL 12 Enhanced piano 7-limit
PIERCE_9.SCL 9 Pierce's 9 of 3\13, see Mathews et al., J. Acoust. Soc. Am. 84, 1214-1222
PIPEDUM7_10.SCL 10 225/224, 1029/1024 and 2048/2025 are homophonic intervals
PIPEDUM7_10A.SCL 10 225/224, 1029/1024 and 64/63 are homophonic intervals
PIPEDUM7_10B.SCL 10 225/224, 2048/2025 and 49/48 are homophonic intervals
PIPEDUM7_10C.SCL 10 225/224, 64/63 and 49/48 are homophonic intervals
PIPEDUM7_10D.SCL 10 1029/1024, 2048/2025 and 64/63 are homophonic intervals
PIPEDUM7_10E.SCL 10 2048/2025, 64/63 and 49/48 are homophonic intervals
PIPEDUM7_12.SCL 12 225/224, 64/63 and 36/35 are homophonic intervals
PIPEDUM7_9.SCL 9 225/224, 49/48 and 36/35 are homophonic intervals
PIPEDUM_10.SCL 10 Scale with homophonic intervals 2048/2025 and 34171875/33554432
PIPEDUM_12.SCL 12 Scale with homophonic intervals 2048/2025 and 81/80, 5-limit
PIPEDUM_12A.SCL 12 Scale with homophonic intervals 2048/2025 and 128/125
PIPEDUM_19.SCL 19 Scale with homophonic intervals 81/80 and 15625/15552, inverse of Mandelbaum
PIPEDUM_19A.SCL 19 Scale with homophonic intervals 15625/15552 and 3125/3072
PIPEDUM_22.SCL 22 Scale with homophonic intervals 2109375/2097152 and 3125/3072
PIPEDUM_22A.SCL 22 Scale with homophonic intervals 2109375/2097152 and 2048/2025
PIPEDUM_31.SCL 31 Scale with homophonic intervals 81/80 225/224 1029/1024
PIPEDUM_31A.SCL 31 Scale with homophonic intervals 2109375/2097152 and 393216/390625
PIPEDUM_34.SCL 34 Scale with homophonic intervals 15625/15552 and 393216/390625
POLANSKY_PS.SCL 50 Three interlocking harmonic series on 1:5:3 by Larry Polansky in Psaltery
POOLE.SCL 7 Poole's double diatonic or dichordal scale
PORTBAG1.SCL 7 Portugese bagpipe tuning
PORTBAG2.SCL 10 Portugese bagpipe tuning 2
PRELLEUR.SCL 12 Peter Prelleur's well temperament (1731)
PRESTON.SCL 12 Preston's equal beating temperament (1785)
PRESTON2.SCL 12 Preston's theoretically correct well temperament
PRIME_5.SCL 5 What Lou Harrison calls "the Prime Pentatonic", a widely used scale
PRINZ.SCL 12 Prinz well-tempermament (1808)
PRINZ2.SCL 12 Prinz equal beating temperament (1808)
PROD13-2.SCL 21 13-limit binary products [1 3 5 7 11 13]
PROD13.SCL 27 13-limit binary products [1 3 5 7 9 11 13]
PROD7D.SCL 39 Double Cubic Corner 7-limit. Chalmers '96
PROD7S.SCL 20 Single Cubic Corner 7-limit
PRODQ13.SCL 40 13-limit Binary products"ients. Chalmers '96
PROG_ENNEA.SCL 9 Progressive Enneatonic, 50+100+150+200 cents in each half (500 cents)
PROG_ENNEA1.SCL 9 Progressive Enneatonic, appr. 50+100+150+200 cents in each half (500 cents)
PROG_ENNEA2.SCL 9 Progressive Enneatonic, appr. 50+100+200+150 cents in each half (500 cents)
PROG_ENNEA3.SCL 9 Progressive Enneatonic, appr. 50+100+150+200 cents in each half (500 cents)
PS-DORIAN.SCL 7 Complex 4 of p. 115 based on Archytas's Enharmonic
PS-ENH.SCL 7 Dorian mode of an Enharmonic genus found in Ptolemy's Harmonics
PS-HYPOD.SCL 7 Complex 7 of p. 115 based on Archytas's Enharmonic
PS-HYPOD2.SCL 7 Complex 8 of p. 115 based on Archytas's Enharmonic
PS-MIXOL.SCL 7 Complex 3 of p. 115 based on Archytas's Enharmonic
PTOLEMY.SCL 7 Intense Diatonic Systonon, also Zarlino's scale
PTOLEMY_CHROM.SCL 7 Ptolemy Soft Chromatic
PTOLEMY_DDIAT.SCL 7 Lyra tuning, Dorian mode, comb. of diatonon toniaion & diatonon ditoniaion
PTOLEMY_DIAT.SCL 7 Ptolemy's Diatonon Ditoniaion & Archytas' Diatonic, also Lyra tuning
PTOLEMY_DIAT2.SCL 7 Dorian mode of a permutation of Ptolemy's Tonic Diatonic
PTOLEMY_DIAT3.SCL 7 Dorian mode of the remaining permutation of Ptolemy's Intense Diatonic
PTOLEMY_DIAT4.SCL 7 permuted Ptolemy's diatonic
PTOLEMY_DIAT5.SCL 7 Sterea lyra, Dorian, comb. of 2 Tonic Diatonic 4chords, also Archytas' diatonic
PTOLEMY_DIFF.SCL 7 Difference tones of Intense Diatonic reduced by 2/1
PTOLEMY_ENH.SCL 7 Dorian mode of Ptolemy's Enharmonic
PTOLEMY_HOM.SCL 7 Dorian mode of Ptolemy's Equable Diatonic or Diatonon Homalon
PTOLEMY_IAST.SCL 7 Ptolemy's Iastia or Lydia tuning, mixture of Tonic Diatonic & Intense Diatonic
PTOLEMY_IASTAIOL.SCL 7 Ptolemy's kithara tuning, mixture of Tonic Diatonic and Ditone Diatonic
PTOLEMY_ICHROM.SCL 7 Dorian mode of Ptolemy's Intense Chromatic
PTOLEMY_IDIAT.SCL 7 Dorian mode of Ptolemy's Intense Diatonic (Diatonon Syntonon)
PTOLEMY_MALAK.SCL 7 Ptolemy's Malaka lyra tuning, a mixture of Intense Chrom. & Tonic Diatonic
PTOLEMY_MALAK2.SCL 7 Malaka lyra, mixture of his Soft Chromatic and Tonic Diatonic.
PTOLEMY_MALDIAT.SCL 7 Ptolemy soft diatonic
PTOLEMY_MALDIAT2.SCL 7 permuted Ptolemy soft diatonic
PTOLEMY_MALDIAT3.SCL 7 permuted Ptolemy soft diatonic
PTOLEMY_META.SCL 7 Metabolika lyra tuning, mixture of Soft Diatonic & Tonic Diatonic
PTOLEMY_MIX.SCL 19 All modes of Ptolemy Intense Diatonic mixed
PTOLEMY_PROD.SCL 21 Product of Intense Diatonic with its intervals
PTOLEMY_TREE.SCL 14 Intense Diatonic with all their Farey parent fractions
PYGMIE.SCL 5 Pygmie scale
PYRAMID.SCL 12 This scale may also be called the "Wedding Cake"
PYRAMID_DOWN.SCL 12 Upside-Down Wedding Cake (divorce cake)
PYTH_12.SCL 12 12-tone Pythagorean scale
PYTH_17.SCL 17 17-tone Pythagorean scale
PYTH_22.SCL 22 Pythagorean shrutis
PYTH_27.SCL 27 27-tone Pythagorean scale
PYTH_31.SCL 31 31-tone Pythagorean scale
PYTH_CHROM.SCL 8 Dorian mode of the so-called Pythagorean chromatic, recorded by Gaudentius
PYTH_SEV.SCL 26 26-tone Pythagorean scale based on 7/4
PYTH_THIRD.SCL 31 Cycle of 5/4 thirds

- Q -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
QUASI_5.SCL 5 Quasi-Equal 5-Tone in 24-tET, 5 5 4 5 5 steps
QUASI_9.SCL 9 Quasi-Equal Enneatonic, Each "tetrachord" has 125 + 125 + 125 + 125 cents
QUINT_CHROM.SCL 7 Aristides Quintilianus' Chromatic genus

- R -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
RAMEAU-FLAT.SCL 12 Rameau bemols, see Pierre-Yves Asselin in "Musique et temperament"
RAMEAU-MINOR.SCL 9 Rameau's systeme diatonique mineur on E. Asc. 4-6-8-9, desc. 9-7-5-4
RAMEAU-NOUV.SCL 12 Temperament by Rameau in Nouveau Systeme (1726)
RAMEAU-SHARP.SCL 12 Rameau dieses, see Pierre-Yves Asselin in "Musique et temperament"
RAMEAU.SCL 12 Rameau scale (1725)
RAMIS.SCL 12 Ramis's Monochord
RAST_MOHA.SCL 7 Rast + Mohajira (Dudon) 4 + 3 + 3 Rast and 3 + 4 + 3 Mohajira tetrachords
RAT_DORENH.SCL 7 Rationalized Schlesinger's Dorian Harmonia in the enharmonic genus
RAT_HYPODENH.SCL 7 1+1 rationalized enharmonic genus derived from K.S.'s 'Bastard' Hypodorian
RAT_HYPODENH2.SCL 7 1+2 rationalized enharmonic genus derived from K.S.'s 'Bastard' Hypodorian
RAT_HYPODENH3.SCL 7 1+3 rationalized enharmonic genus derived from K.S.'s 'Bastard' Hypodorian
RAT_HYPODHEX.SCL 7 1+1 rationalized hexachromatic/hexenharmonic genus derived from K.S.'Bastard'
RAT_HYPODHEX2.SCL 7 1+2 rat. hexachromatic/hexenharmonic genus derived from K.S.'s 'Bastard' Hypodo
RAT_HYPODHEX3.SCL 7 1+3 rat. hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' Hypodorian
RAT_HYPODHEX4.SCL 7 1+4 rat. hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' Hypodorian
RAT_HYPODHEX5.SCL 7 1+5 rat. hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' Hypodorian
RAT_HYPODHEX6.SCL 7 2+3 rationalized hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' hypod
RAT_HYPODPEN.SCL 7 1+1 rationalized pentachromatic/pentenharmonic genus derived from K.S.'s 'Bastar
RAT_HYPODPEN2.SCL 7 1+2 rationalized pentachromatic/pentenharmonic genus from K.S.'s 'Bastard' hyp
RAT_HYPODPEN3.SCL 7 1+3 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian
RAT_HYPODPEN4.SCL 7 1+4 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian
RAT_HYPODPEN5.SCL 7 2+3 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian
RAT_HYPODPEN6.SCL 7 2+3 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian
RAT_HYPODTRI.SCL 7 rationalized first (1+1) trichromatic genus derived from K.S.'s 'Bastard' hyp
RAT_HYPODTRI2.SCL 7 rationalized second (1+2) trichromatic genus derived from K.S.'s 'Bastard' hyp
RAT_HYPOLENH.SCL 8 Rationalized Schlesinger's Hypolydian Harmonia in the enharmonic genus
RAT_HYPOPCHROM.SCL 7 Rationalized Schlesinger's Hypophrygian Harmonia in the chromatic genus
RAT_HYPOPENH.SCL 7 Rationalized Schlesinger's Hypophrygian Harmonia in the enharmonic genus
RAT_HYPOPPEN.SCL 7 Rationalized Schlesinger's Hypophrygian Harmonia in the pentachromatic genus
RAT_HYPOPTRI.SCL 7 Rationalized Schlesinger's Hypophrygian Harmonia in first trichromatic genus
RAT_HYPOPTRI2.SCL 7 Rationalized Schlesinger's Hypophrygian Harmonia in second trichromatic genus
REDFIELD.SCL 7 Redfield New Diatonic
REINHARD-M.SCL 12 Mayumi Reinhard's Harmonic-13 scale. 1/1=440Hz.
REINHARD.SCL 12 Reinhard 19-limit superparticular
RENTENG1.SCL 5 Gamelan Renteng from Chileunyi (Tg. Sari). 1/1=330 Hz
RENTENG2.SCL 5 Gamelan Renteng from Chikebo (Tg. Sari). 1/1=360 Hz
RENTENG3.SCL 6 Gamelan Renteng from Lebakwangi (Pameungpeuk). 1/1=377 Hz
RENTENG4.SCL 5 Gamelan Renteng Bale` bandung from Kanoman (Cheribon). 1/1=338 Hz
ROBOT.SCL 12 Dead Robot (see lattice)
ROBOT_LIVE.SCL 12 Live Robot
ROMIEU.SCL 12 Romieu
ROMIEU_INV.SCL 12 Romieu inverted, Pure (just) C minor in Wilkinson: Tuning In
ROUANET.SCL 5 Islamic Genus (DF#7), from Rouanet
ROUSSEAU.SCL 12 Rousseau
ROUSSEAUW.SCL 12 Jean-Jacques Rousseau's temperament (1768)
RVF1.SCL 19 RVF-1: D-A 695 cents, the increment is 0.25 cents, interval range 49.5 to 75.5
RVF2.SCL 19 RVF-2: 695 cents, 0.607 cents, 31-90 cents, C-A# is 7/4.
RVF3.SCL 19 RVF-3: 694.737, 0.082, 25-97, the fifth E#-B# is 3/2.

- S -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
SAFI_DIAT.SCL 7 Safi al-Din's Diatonic, also the strong form of Avicenna's 8/7 diatonic
SAFI_DIAT2.SCL 7 Safi al-Din's 2nd Diatonic, a 3/4 tone diatonic like Ptolemy's Equable Diatonic
SAFI_MAJOR.SCL 6 Singular Major (DF #6), from Safi al-Din, strong 32/27 chromatic
SALINAS_ENH.SCL 7 Salinas's and Euler's enharmonic
SALUNDING.SCL 5 Gamelan slunding, Kengetan, South-Bali. 1/1=378 Hz
SANKEY.SCL 12 John Sankey's Scarlatti tuning, personal evaluation based on d'Alembert's
SANZA.SCL 8 African N'Gundi Sanza (idiophone; set of lamellas, thumb-plucked)
SAUVEUR.SCL 12 Sauveur's tempered system of the harpsichord. Traite', 1697
SAUVEUR2.SCL 12 Sauveur's Syste^me Chromatique des Musiciens (Memoires 1701), 12 out of 55.
SAUVEUR_17.SCL 17 Sauveur's oriental system, aft. Kitab al-adwar (Bagdad 1294) by Safi al-Din
SAUVEUR_JI.SCL 12 Aplication des sons harmoniques aux jeux d'orgues, 1702 (pip 81/80 & 128/125)
SAVAS_BARDIAT.SCL 7 Savas's Byzantine Liturgical mode, 8 + 12 + 10 parts
SAVAS_BARENH.SCL 7 Savas's Byzantine Liturgical mode, 8 + 16 + 6 parts
SAVAS_CHROM.SCL 7 Savas's Chromatic, Byzantine Liturgical mode, 8 + 14 + 8 parts
SAVAS_DIAT.SCL 7 Savas's Diatonic, Byzantine Liturgical mode, 10 + 8 + 12 parts
SAVAS_PALACE.SCL 7 Savas's Byzantine Liturgical mode, 6 + 20 + 4 parts
SCALATRON.SCL 19 Scalatron (tm) 19-tone scale, see manual, 1974
SCHIDLOF.SCL 21 Schidlof
SCHISMIC.SCL 12 Scale with major thirds flat by a schisma
SCHOLZ.SCL 8 Simple Tune #1 Carter Scholz
SCOTBAG.SCL 7 Scottish bagpipe tuning
SCOTBAG2.SCL 7 Scottish bagpipe tuning 2
SCOTBAG3.SCL 7 Scottish bagpipe tuning 3
SCOTBAG4.SCL 7 Scottish Bagpipe Ellis/Land
SECOR.SCL 17 George Secor's well temperament with 5 pure 11/7 and 3 near just 11/6
SEGAH.SCL 7 Arabic SEGAH (Dudon) Two 4 + 3 + 3 tetrachords
SEGAH2.SCL 7 Iranian mode Segah from C
SEGAH_RAT.SCL 7 Rationalized Arabic SEGAH
SEIKILOS.SCL 12 Seikilos Tuning
SEKATI1.SCL 7 Gamelan sekati from Sumenep, East-Madura. 1/1=244 Hz.
SEKATI2.SCL 7 Gamelan Kyahi Sepuh from kraton Solo. 1/1=216 Hz.
SEKATI3.SCL 7 Gamelan Kyahi Henem from kraton Solo. 1/1=168.5 Hz.
SEKATI4.SCL 7 Gamelan Kyahi Guntur madu from kraton Jogya. 1/1=201.5 Hz.
SEKATI5.SCL 7 Gamelan Kyahi Naga Ilaga from kraton Jogya. 1/1=218.5 Hz.
SEKATI6.SCL 7 Gamelan Kyahi Munggang from Paku Alaman, Jogya. 1/1=199.5 Hz.
SEKATI7.SCL 7 Gamelan of Sultan Anom from Cheribon. 1/1=282 Hz.
SEKATI8.SCL 7 The old Sultans-gamelan Kyahi Suka rame from Banten. 1/1=262.5 Hz.
SEKATI9.SCL 7 Gamelan Sekati from Katjerbonan, Cheribon. 1/1=292 Hz.
SELISIR.SCL 5 Gamelan semara pagulingan, Bali. Pagan Kelod
SELISIR2.SCL 5 Gamelan semara pagulingan, Bali. Kamasan
SERRE_ENH.SCL 7 Dorian mode of the Serre's Enharmonic
SEV-ELEV.SCL 12 "Seven-Eleven Blues" of Pitch Palette
SHALFUN.SCL 24 d'Erlanger vol.5, p.40. After Alexandre ^Salfun (Chalfoun)
SHARM1C-CONM.SCL 7 Subharm1C-ConMixolydian
SHARM1C-CONP.SCL 7 Subharm1C-ConPhryg
SHARM1C-DOR.SCL 8 Subharm1C-Dorian
SHARM1C-LYD.SCL 8 Subharm1C-Lydian
SHARM1C-MIX.SCL 7 Subharm1C-Mixolydian
SHARM1C-PHR.SCL 7 Subharm1C-Phrygian
SHARM1E-CONM.SCL 7 Subharm1E-ConMixolydian
SHARM1E-CONP.SCL 7 Subharm1E-ConPhrygian
SHARM1E-DOR.SCL 8 Subharm1E-Dorian
SHARM1E-LYD.SCL 8 Subharm1E-Lydian
SHARM1E-MIX.SCL 7 Subharm1E-Mixolydian
SHARM1E-PHR.SCL 7 Subharm1E-Phrygian
SHARM2C-15.SCL 7 Subharm2C-15-Harmonia
SHARM2C-HYPOD.SCL 8 SHarm2C-Hypodorian
SHARM2C-HYPOL.SCL 8 SHarm2C-Hypolydian
SHARM2C-HYPOP.SCL 8 SHarm2C-Hypophrygian
SHARM2E-15.SCL 7 Subharm2E-15-Harmonia
SHARM2E-HYPOD.SCL 8 SHarm2E-Hypodorian
SHARM2E-HYPOL.SCL 8 SHarm2E-Hypolydian
SHARM2E-HYPOP.SCL 8 SHarm2E-Hypophrygian
SHENG.SCL 12 Sheng scale on naturals starting on d, from Fortuna
SHERWOOD.SCL 12 Sherwood's improved meantone temperament
SIAMESE.SCL 12 Siamese Tuning, after Clem Fortuna's Microtonal Guide
SILVER.SCL 12 Equal beating chromatic scale, A.L.Leigh Silver JASA 29/4, 476-481, 1957
SILVER11.SCL 11 Eleven-Tone MOS from 1+ sqr(2), 1525.864 cents
SILVER7.SCL 7 Seven-Tone MOS from 1+ sqr(2), 1525.864 cents.
SILVERMEAN.SCL 7 First 6 approximants to the Silver Mean, 1+ sqr(2) reduced by 2/1
SIMONTON.SCL 12 Simonton Integral Ratio Scale, see JASA: A new integral ratio scale
SIMS.SCL 18 Ezra Sims' 18-tone mode
SIMS2.SCL 20 Sims II
SIMS_24.SCL 24 See his article, Reflections on This and That, 1991 p.93-106
SIN.SCL 21 1/sin(2pi/n), n=4..25
SINEMOD12.SCL 19 Sine modulated F=12, A=-.08203754
SINEMOD8.SCL 19 Sine modulated F=8, A=.11364155. Deviation minimal3/2, 4/3, 5/4, 6/5, 5/3, 8/5
SINGAPORE.SCL 7 An observed xylophone tuning from Singapore
SINGAPORE2.SCL 7 An observed balafon tuning from Singapore
SINTEMP6.SCL 12 Sine modulated fifths, A=1/6 Pyth, one cycle, f0=-90 degrees
SINTEMP_19.SCL 19 Sine modulated thirds, A=7.366 cents, one cycle over fifths, f0=90 degrees
SINTEMP_7.SCL 7 Sine modulated fifths, A=8.12 cents, one cycle, f0=90 degrees
SLENDRO.SCL 5 Observed Javanese Slendro scale
SLENDRO2.SCL 5 Gamelan slendro from Ranchaiyuh, distr. Tanggerang, Batavia. 1/1=282.5 Hz
SLENDRO3.SCL 5 Gamelan kodok ngorek. 1/1=270 Hz
SLENDRO4.SCL 5 Low gender from Kuta, Bali. 1/1=183 Hz
SLENDRO5_1.SCL 5 A slendro type pentatonic which is based on intervals of 7; from Lou Harrison
SLENDRO5_2.SCL 5 A slendro type pentatonic which is based on intervals of 7, no. 2
SLENDRO5_4.SCL 5 A slendro type pentatonic which is based on intervals of 7, no. 4
SLENDROB1.SCL 5 Gamelan miring of Musadikrama, desa Katur, Bajanegara. 1/1=434 Hz
SLENDROB2.SCL 5 Gamelan miring from Bajanegara. 1/1=262 Hz
SLENDROB3.SCL 5 Gamelan miring from Ngumpak, Bajanegara. 1/1=266 Hz
SLENDROC1.SCL 5 Kyahi Kanyut mesem slendro (Mangku Nagaran Solo). 1/1=291 Hz
SLENDROC2.SCL 5 Kyahi Pengawe sari (Paku Alaman, Jogja). 1/1=295 Hz.
SLENDROC3.SCL 5 Gamelan slendro of R.M. Jayadipura, Jogja. 1/1=231 Hz
SLENDROC4.SCL 5 Gamelan slendro, Rancha iyuh, Tanggerang, Batavia. 1/1=282.5 Hz
SLENDROC5.SCL 5 Gender wayang from Pliatan, South Bali. 1/1=611 Hz
SLENDROC6.SCL 10 from William Malm: Music Cultures of the Pacific, the Near East and Asia.
SLENDROD1.SCL 5 Gender wayang from Ubud (S. Bali). 1/1=347 Hz
SLENDRO_7_1.SCL 5 Septimal Slendro 1, From HMSL Manual, also Lou Harrison, Jacques Dudon
SLENDRO_7_2.SCL 5 Septimal Slendro 2, From Lou Harrison, Jacques Dudon's APTOS
SLENDRO_7_3.SCL 5 Septimal Slendro 3, Harrison, Dudon, called "MILLS" after Mills Gamelan
SLENDRO_7_4.SCL 5 Septimal Slendro 4, from Lou Harrison, Jacques Dudon, called "NAT"
SLENDRO_7_5.SCL 5 Septimal Slendro 5, from Jacques Dudon
SLENDRO_A1.SCL 5 Dudon's Slendro A1, "Seven-Limit Slendro Mutations", 1/1 8:2'94 hexany 1.3.7.21
SLENDRO_A2.SCL 5 Dudon's Slendro A2 from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994
SLENDRO_ALV.SCL 5 Bill Alves, slendro for Gender Barung, 1/1 vol.9 no.4, 1997. 1/1=282.86
SLENDRO_ANG.SCL 5 Gamelan Angklung Sangsit, North Bali. 1/1=294 Hz
SLENDRO_GUM.SCL 5 Gumbeng, bamboo idiochord from Banyumas. 1/1=440 Hz
SLENDRO_KY1.SCL 5 Kyahi Kanyut Me`sem slendro, Mangku Nagaran, Solo. 1/1=291 Hz
SLENDRO_KY2.SCL 5 Kyahi Pengawe' sari, Paku Alaman, Jogya. 1/1=295 Hz
SLENDRO_M.SCL 5 Dudon's Slendro M from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994
SLENDRO_MAT.SCL 12 Dudon's Slendro Matrix from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994
SLENDRO_PA.SCL 5 "Blown fifth" primitive slendro, von Hornbostel
SLENDRO_PB.SCL 5 "Blown fifth" medium slendro, von Hornbostel
SLENDRO_PC.SCL 5 "Blown fifth" modern slendro, von Hornbostel
SLENDRO_PLIAT.SCL 9 Gender wayang from Pliatan, South Bali (Slendro), 1/1=305.5 Hz
SLENDRO_S1.SCL 5 Dudon's Slendro S1 from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994
SLENDRO_S2.SCL 5 Dudon's Slendro S2
SLENDRO_UDAN.SCL 5 Slendro Udan Mas (approx)
SLENDRO_WOLF.SCL 5 Daniel Wolf's slendro. Tuning List 30 5 1997
SLEN_PEL.SCL 12 Pelog white, Slendro black
SLEN_PEL16.SCL 12 16-tET Slendro and Pelog
SLEN_PEL23.SCL 12 23-tET Slendro and Pelog
SLEN_PEL_JC.SCL 12 Slendro/JC PELOG S1c,P1c#,S2d,eb,P2e,S3f,P3f#,S4g,ab,P4a,S5bb,P5b
SLEN_PEL_SCHMIDT.SCL 12 Dan Schmidt (Pelog white, Slendro black)
SMITH.SCL 12 Robert Smith's Equal Harmony temperament (1749)
SMITH2.SCL 19 Roger K. Smith, "Multitonic" scale, just version
SMITH2_19.SCL 19 19 out of 612-tET by Roger K. Smith, 1978
SMITH_MQ.SCL 12 Robert Smith approximation of quarter comma meantone fifth
SOFTDIAT.SCL 7 New Soft Diatonic genus with equally divided Pyknon; Dorian Mode; 1:1 pyknon
SOLEMN.SCL 6 Solemn 6
SONGLINES.SCL 12 Songlines.DEM, Bill Thibault and Scott Gresham-Lancaster. 1992 ICMC
SORGE1.SCL 12 Georg Andreas Sorge, 1744 (A)
SORGE2.SCL 12 Georg Andreas Sorge, 1744 (B)
SORGE3.SCL 12 Georg Andreas Sorge, 1758
SPEC1_14.SCL 12 Spectrum of 8/7: 1 to 27 reduced by 2/1
SPEC1_17.SCL 12 Spectrum of 7/6: 1 to 27 reduced by 2/1
SPEC1_25.SCL 12 Spectrum of 5/4: 1 to 25 reduced by 2/1
SPEC1_33.SCL 12 Spectrum of 4/3: 1 to 29 reduced by 2/1
SPEC1_4.SCL 12 Spectrum of 7/5: 1 to 25 reduced by 2/1
SPEC1_5.SCL 12 Spectrum of 1.5: 1 to 27 reduced by 2/1
SPECR2.SCL 12 Spectrum of sqrt(2): 1 to 29 reduced by 2/1
SPECR3.SCL 12 Spectrum of sqrt(3): 1 to 31 reduced by 2/1
SPONDEION.SCL 6 Subharmonic six-tone series, guess at Greek poet Terpander's, 6th c. BC
SPOORWEGEN1.SCL 16 NS teken
SPOORWEGEN2.SCL 20 NS teken
STANHOPE.SCL 12 Well temperament of Charles, third earl of Stanhope, 1806
STELDEK1.SCL 30 Stellated two out of 1 3 5 7 9 dekany
STELEIKO.SCL 70 Stellated Eikosany 3 out of 1 3 5 7 9 11
STELHEX1.SCL 14 Stellated two out of 1 3 5 7 hexany, also dekatesserany, mandala, tetradekany
STELHEX2.SCL 12 Stellated two out of 1 3 5 9 hexany
STELHEX3.SCL 14 Stellated Tetrachordal Hexany based on Archytas's Enharmonic
STELHEX4.SCL 14 Stellated Tetrachordal Hexany based on the 1/1 35/36 16/15 4/3 tetrachord
STELHEX5.SCL 12 Stellated two out of 1 3 7 9 hexany, stellation is degenerate
STELHEX6.SCL 14 Stellated two out of 1 3 5 11 hexany, from The Giving, by Stephen J. Taylor
STOCKHAUSEN.SCL 25 Stockhausen's 25-note ET scale
STONE.SCL 16 Tom Stone's Guitar Scale
STOPPER.SCL 19 Bernard Stopper, piano tuning with 19th root of 3 (1988)
SUB24-12.SCL 12 Subharmonics 24-12
SUB24.SCL 24 Subharmonics 24-1
SUB40.SCL 12 sub 40-20
SUB48.SCL 12 12 of sub 48 (Leven)
SUB50.SCL 12 12 of sub 50
SUB8.SCL 8 Subharmonic series 1/16 - 1/8
SUMATRA.SCL 9 "Archeological" tuning of Pasirah Rus orch. in Muaralakitan, Sumatra. 1/1=354 Hz
SUPER_10.SCL 10 Most equal superparticular 10-tone scale
SUPER_11.SCL 11 Most equal superparticular 11-tone scale
SUPER_12.SCL 12 Most equal superparticular 12-tone scale
SUPER_12_1.SCL 12 One but most equal superparticular 12-tone scale
SUPER_12_2.SCL 12 Two but most equal superparticular 12-tone scale
SUPER_13.SCL 13 Most equal superparticular 13-tone scale
SUPER_14.SCL 14 Most equal superparticular 14-tone scale
SUPER_15.SCL 15 Most equal superparticular 15-tone scale
SUPER_17.SCL 17 Superparticular 17-tone scale
SUPER_19.SCL 19 Superparticular 19-tone scale
SUPER_19_1.SCL 19 Superparticular 19-tone scale
SUPER_19_2.SCL 19 Superparticular 19-tone scale
SUPER_22.SCL 22 Superparticular 22-tone scale
SUPER_22_1.SCL 22 Superparticular 22-tone scale
SUPER_24.SCL 24 Superparticular 24-tone scale, inverse of Mans.ur 'Awad
SUPER_6.SCL 6 Most equal superparticular 6-tone scale
SUPER_7.SCL 7 Most equal superparticular 7-tone scale
SUPER_8.SCL 8 Most equal superparticular 8 tone scale
SUPER_9.SCL 9 Most equal superparticular 9-tone scale
SUPPIG.SCL 19 Friedrich Suppig's 19-tone JI scale. Calculus Musicus, Berlin 1722
SUR_9.SCL 9 Theoretical nine-tone surupan gamut
SUR_AJENG.SCL 5 Surupan ajeng
SUR_DEGUNG.SCL 5 Surupan degung
SUR_MADENDA.SCL 5 Surupan madenda
SUR_MELOG.SCL 5 Surupan melog
SUR_MIRING.SCL 5 Surupan miring
SUR_X.SCL 5 Surupan tone-gender X (= unmodified nyorog)
SUR_Y.SCL 5 Surupan tone-gender Y (= mode on pamiring)
SVERIGE.SCL 24 Scale on Swedish 50 crown banknote of some kind of violin.
SYNTONOLYDIAN.SCL 7 Greek Syntonolydian, also genus duplicatum medium, or ditonum (Al-Farabi)
SYRIAN.SCL 30 After ^Sayh.'Ali ad-Darwis^ (Shaykh Darvish) from d'Erlanger vol.5, p.29

- T -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
T-SIDE.SCL 12 Tau-on-Side
TANBUR.SCL 12 Sub-40 tanbur scale
TANSUR.SCL 12 William Tans'ur temperament from A New Musical Grammar (1746) p. 73
TAYLOR.SCL 12 Gregory Taylor's Dutch train ride scale based on pelog_schmidt
TEMES-MIX.SCL 9 Temes' 5-tone Phi scale mixed with its octave inverse
TEMES-UR.SCL 5 Temes' Ur 5-tone phi scale
TEMES.SCL 10 Temes' 5-tone Phi scale / 2 cycle
TEMES2-MIX.SCL 18 Temes' 2 cycle Phi scale mixed with its 4/1 inverse
TEMP10EBSS.SCL 10 Cycle of 10 equal "beating" 15/14's
TEMP11EBST.SCL 11 Cycle of 11 equal beating 9/7's
TEMP12EBFO.SCL 12 Equal beating fifths and fifth beats twice octave at C
TEMP12EP.SCL 12 Pythagorean comma distributed equally over octave and fifth: 1/19-Pyth comma
TEMP12FO2.SCL 12 Fifth beats twice octave
TEMP12P6.SCL 12 Modified 1/6-Pyth. comma temperament
TEMP12W2B.SCL 12 The fifths on white keys beat twice the amount of fifths on black keys
TEMP15EBSI.SCL 15 Cycle of 15 equal beating major sixths
TEMP16D3.SCL 16 Cycle of 16 thirds tempered by 1/3 small diesis
TEMP16D4.SCL 16 Cycle of 16 thirds tempered by 1/4 small diesis
TEMP16EBS.SCL 16 Cycle of 16 equal beating sevenths
TEMP16EBT.SCL 16 Cycle of 16 equal beating thirds
TEMP16L4.SCL 16 Cycle of 16 fifths tempered by 1/4 major limma
TEMP17C10.SCL 17 Cycle of 17 fifths tempered by 1/10 of "17-tET comma"
TEMP17C11.SCL 17 Cycle of 17 fifths tempered by 1/11 of "17-tET comma"
TEMP17C12.SCL 17 Cycle of 17 fifths tempered by 1/12 of "17-tET comma"
TEMP17C13.SCL 17 Cycle of 17 fifths tempered by 1/13 of "17-tET comma"
TEMP17C14.SCL 17 Cycle of 17 fifths tempered by 1/14 of "17-tET comma"
TEMP17C15.SCL 17 Cycle of 17 fifths tempered by 1/15 of "17-tET comma"
TEMP17EBF.SCL 17 Cycle of 17 equal beating fifths
TEMP17EBS.SCL 17 Cycle of 17 equal beating sevenths
TEMP17FO2.SCL 17 Fifth beats twice octave
TEMP19D5.SCL 19 Cycle of 19 thirds tempered by 1/5 small diesis. Third = 3\5
TEMP19EBF.SCL 19 Cycle of 19 equal beating fifths
TEMP19EBMT.SCL 19 Cycle of 19 equal beating minor thirds
TEMP19EBO.SCL 19 Cycle of 19 equal beating octaves in twelfth
TEMP19EBT.SCL 19 Cycle of 19 equal beating thirds
TEMP19LST.SCL 19 Cycle of 19 least squares thirds 5/4^5 = 3/2
TEMP19LST2.SCL 19 Cycle of 19 least squares thirds 5/4, 3/2 (5), 6/5 (4)
TEMP21EBS.SCL 21 Cycle of 21 equal beating sevenths
TEMP22EBF.SCL 22 Cycle of 22 equal beating fifths
TEMP22EBT.SCL 22 Cycle of 22 equal beating thirds
TEMP22FO2.SCL 22 Fifth beats twice octave
TEMP23EBS.SCL 23 Cycle of 23 equal beating major sixths
TEMP24EBF.SCL 24 24-tone ET with 23 equal beatings fifths. Fifth on 17 slightly smaller.
TEMP25EBT.SCL 25 Cycle of 25 equal beating thirds
TEMP26EB3.SCL 26 Cycle of 26 fifths, 5/4 beats three times 3/2
TEMP26EBF.SCL 26 Cycle of 26 equal beating fifths
TEMP26EBS.SCL 26 Cycle of 26 equal beating sevenths
TEMP27C8.SCL 27 Cycle of 27 fifths tempered by 1/8 of difference between augm. 2nd and 5/4
TEMP27EB2.SCL 27 Cycle of 27 fourths, 5/4 beats twice 4/3
TEMP28EBT.SCL 28 Cycle of 28 equal beating thirds
TEMP29EBF.SCL 29 Cycle of 29 equal beating fifths
TEMP29FO.SCL 29 Fifth beats equal octave
TEMP31C51.SCL 31 Cycle of 31 51/220-comma tempered fifths (twice diff. of 31-tET and 1/4-comma)
TEMP31EB1.SCL 31 Cycle of 31 thirds, 3/2 beats equal 5/4. Third 1/18 synt. comma higher
TEMP31EB1A.SCL 31 Cycle of 31 thirds, 5/4 beats equal 7/4
TEMP31EB2.SCL 31 Cycle of 31 thirds, 3/2 beats twice 5/4
TEMP31EB2A.SCL 31 Cycle of 31 thirds, 5/4 beats twice 3/2
TEMP31EB2B.SCL 31 Cycle of 31 thirds, 5/4 beats twice 7/4 (7/4 beats twice 5/4 gives 31-tET)
TEMP31EBF.SCL 31 Cycle of 31 equal beating fifths
TEMP31EBS.SCL 31 Cycle of 31 equal beating sevenths
TEMP31EBS1.SCL 31 Cycle of 31 sevenths, 3/2 beats equal 7/4. 17/9 schisma fifth
TEMP31EBS2.SCL 31 Cycle of 31 sevenths, 3/2 beats twice 7/4. Almost 31-tET
TEMP31EBSI.SCL 31 Cycle of 31 equal beating major sixths
TEMP31EBT.SCL 31 Cycle of 31 equal beating thirds
TEMP31G3.SCL 31 Cycle of 31 sevenths tempered by 1/3 gamelan residue
TEMP31G4.SCL 31 Cycle of 31 sevenths tempered by 1/4 gamelan residue
TEMP31G5.SCL 31 Cycle of 31 sevenths tempered by 1/5 gamelan residue
TEMP31G6.SCL 31 Cycle of 31 sevenths tempered by 1/6 gamelan residue
TEMP31G7.SCL 31 Cycle of 31 sevenths tempered by 1/7 gamelan residue
TEMP31H10.SCL 31 Cycle of 31 fifths tempered by 1/10 Harrison's comma
TEMP31H11.SCL 31 Cycle of 31 fifths tempered by 1/11 Harrison's comma
TEMP31H12.SCL 31 Cycle of 31 fifths tempered by 1/12 Harrison's comma
TEMP31H8.SCL 31 Cycle of 31 fifths tempered by 1/8 Harrison's comma
TEMP31H9.SCL 31 Cycle of 31 fifths tempered by 1/9 Harrison's comma
TEMP31TO.SCL 31 Third beats equal octave
TEMP31W10.SCL 31 Cycle of 31 thirds tempered by 1/10 Wuerschmidt comma
TEMP31W11.SCL 31 Cycle of 31 thirds tempered by 1/11 Wuerschmidt comma
TEMP31W12.SCL 31 Cycle of 31 thirds tempered by 1/12 Wuerschmidt comma
TEMP31W13.SCL 31 Cycle of 31 thirds tempered by 1/13 Wuerschmidt comma
TEMP31W14.SCL 31 Cycle of 31 thirds tempered by 1/14 Wuerschmidt comma
TEMP31W15.SCL 31 Cycle of 31 thirds tempered by 1/15 Wuerschmidt comma, almost 31-tET
TEMP31W8.SCL 31 Cycle of 31 thirds tempered by 1/8 Wuerschmidt comma
TEMP31W9.SCL 31 Cycle of 31 thirds tempered by 1/9 Wuerschmidt comma
TEMP34EB2A.SCL 34 Cycle of 34 thirds, 5/4 beats twice 3/2
TEMP34EBSI.SCL 34 Cycle of 34 equal beating major sixths
TEMP34EBT.SCL 34 Cycle of 34 equal beating thirds
TEMP34W10.SCL 34 Cycle of 34 thirds tempered by 1/10 Wuerschmidt comma
TEMP34W5.SCL 34 Cycle of 34 thirds tempered by 1/5 Wuerschmidt comma
TEMP34W6.SCL 34 Cycle of 34 thirds tempered by 1/6 Wuerschmidt comma
TEMP34W7.SCL 34 Cycle of 34 thirds tempered by 1/7 Wuerschmidt comma
TEMP34W8.SCL 34 Cycle of 34 thirds tempered by 1/8 Wuerschmidt comma
TEMP34W9.SCL 34 Cycle of 34 thirds tempered by 1/9 Wuerschmidt comma
TEMP3EBT.SCL 3 Cycle of 3 equal beating thirds
TEMP4EBMT.SCL 4 Cycle of 4 equal beating minor thirds
TEMP4EBSI.SCL 4 Cycle of 4 equal beating major sixths
TEMP53EBSI.SCL 53 Cycle of 53 equal beating major sixths
TEMP53EBT.SCL 53 Cycle of 53 equal beating thirds
TEMP5EBF.SCL 5 Cycle of 5 equal beating fifths
TEMP5EBS.SCL 5 Cycle of 5 equal beating harmonic sevenths
TEMP6EB2.SCL 6 Cycle of 6 equal beating 9/8 seconds
TEMP6TEB.SCL 6 Cycle of 6 equal beating 6/5's in a twelfth
TEMP7-5EBF.SCL 12 7 equal beating fifths on white, 5 equal beating fifths on black
TEMP7EBF.SCL 7 Cycle of 7 equal beating fifths
TEMP8EB3Q.SCL 8 Cycle of 8 equal "beating" 12/11's
TEMP9EBMT.SCL 9 Cycle of 9 equal beating 7/6 septimal minor thirds
TETRAGAM-DI.SCL 12 Tetragam Dia2
TETRAGAM-EN.SCL 12 Tetragam Enharm.
TETRAGAM-HEX.SCL 12 Tetragam/Hexgam
TETRAGAM-PY.SCL 12 Tetragam Pyth.
TETRAGAM-SLPE.SCL 12 Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B
TETRAGAM-SLPE2.SCL 12 Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B
TETRAGAM-SP.SCL 12 Tetragam Septimal
TETRAGAM-UN.SCL 12 Tetragam Undecimal
TETRAGAM13.SCL 12 Tetragam (13-tET)
TETRAGAM5.SCL 12 Tetragam (5-tET)
TETRAGAM6.SCL 12 Tetragam (6-tET)
TETRAGAM7.SCL 12 Tetragam (7-tET)
TETRAGAM8.SCL 12 Tetragam (8-tET)
TETRAGAM9A.SCL 12 Tetragam (9-tET) A
TETRAGAM9B.SCL 12 Tetragam (9-tET) B
TETRAPHONIC_31.SCL 31 31-tone Tetraphonic Cycle, conjunctive form on 5/4, 6/5, 7/6 and 8/7
TETRATRIAD.SCL 9 4:5:6 Tetratriadic scale
TETRATRIAD1.SCL 9 3:5:9 Tetratriadic scale
THAILAND.SCL 7 Observed ranat tuning from Thailand. Helmholtz (#85, p. 518)
THAILAND2.SCL 7 Tuning from an out of tune Thai instrument. Helmholtz p. 518, see p. 556
THAILAND3.SCL 7 Observed tak'hay tuning. Helmholtz, p. 518
THAILAND4.SCL 7 Observed ranat t'hong tuning. Helmholtz, p. 518
TIBY1.SCL 7 Tiby's 1st Byzantine Liturgical genus, 12 + 13 + 3 parts
TIBY2.SCL 7 Tiby's second Byzantine Liturgical genus, 12 + 5 + 11 parts
TIBY3.SCL 7 Tiby's third Byzantine Liturgical genus, 12 + 9 + 7 parts
TIBY4.SCL 7 Tiby's fourth Byzantine Liturgical genus, 9 + 12 + 7 parts
TONOS15_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-15
TONOS17_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-17
TONOS19_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-19
TONOS21_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-21
TONOS23_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-23
TONOS25_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-25
TONOS27_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-27
TONOS29_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-29
TONOS31_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-31
TONOS31_PIS2.SCL 15 Diatonic Perfect Immutable System in the new Tonos-31B
TONOS33_PIS.SCL 15 Diatonic Perfect Immutable System in the new Tonos-33
TRANH.SCL 5 Bac Dan Tranh scale, Vietnam
TRANH2.SCL 5 Dan Ca Dan Tranh Scale
TRANH3.SCL 6 Sa Mac Dan Tranh scale
TRI12-1.SCL 12 12-tone Tritriadic of 7:9:11
TRI12-2.SCL 12 12-tone Tritriadic of 6:7:9
TRI19-1.SCL 19 3:5:7 Tritriadic 19-Tone Matrix
TRI19-2.SCL 19 3:5:9 Tritriadic 19-Tone Matrix
TRI19-3.SCL 19 4:5:6 Tritriadic 19-Tone Matrix
TRI19-4.SCL 19 4:5:9 Tritriadic 19-Tone Matrix
TRI19-5.SCL 19 5:7:9 Tritriadic 19-Tone Matrix
TRI19-6.SCL 19 6:7:8 Tritriadic 19-Tone Matrix
TRI19-7.SCL 19 6:7:9 Tritriadic 19-Tone Matrix
TRI19-8.SCL 19 7:9:11 Tritriadic 19-Tone Matrix
TRI19-9.SCL 19 4:5:7 Tritriadic 19-Tone Matrix
TRIANG11.SCL 15 11-limit triangular diamond lattice with 64/63 intervals removed
TRIAPHONIC_12.SCL 12 12-tone Triaphonic Cycle, conjunctive form on 4/3, 5/4 and 6/5
TRIAPHONIC_17.SCL 17 17-tone Triaphonic Cycle, conjunctive form on 4/3, 7/6 and 9/7
TRICHORD.SCL 11 Trichordal Undecatonic
TRITRIAD.SCL 7 Tritriadic scale of the 10:12:15 triad, natural minor mode
TRITRIAD10.SCL 7 Tritriadic scale of the 10:14:15 triad
TRITRIAD11.SCL 7 Tritriadic scale of the 11:13:15 triad
TRITRIAD13.SCL 7 Tritriadic scale of the 10:13:15 triad
TRITRIAD14.SCL 7 14.18.21 Tritriadic. Primary triads 1/1 9/7 3/2, secondary are 1/1 7/6 3/2
TRITRIAD18.SCL 7 Tritriadic scale of the 18:22:27 triad
TRITRIAD22.SCL 7 Tritriadic scale of the 22:27:33 triad
TRITRIAD26.SCL 7 Tritriadic scale of the 26:30:39 triad
TRITRIAD3.SCL 7 Tritriadic scale of the 3:5:7 triad. Possibly Mathews's 3.5.7a
TRITRIAD32.SCL 7 Tritriadic scale of the 26:32:39 triad
TRITRIAD3C.SCL 7 From 1/1 7/6 7/5, a variant of the 3.5.7 triad
TRITRIAD3D.SCL 7 From 1/1 7/6 5/3, a variant of the 3.5.7 triad
TRITRIAD5.SCL 7 Tritriadic scale of the 5:7:9 triad, perhaps Mathews's 5.7.9a.
TRITRIAD68.SCL 7 Tritriadic scale of the 6:7:8 triad
TRITRIAD68I.SCL 7 Tritriadic scale of the subharmonic 6:7:8 triad
TRITRIAD69.SCL 7 Tritriadic scale of the 6:7:9 triad
TRITRIAD7.SCL 7 Tritriadic scale of the 7:9:11 triad
TRITRIAD9.SCL 7 Tritriadic scale of the 9:11:13 triad
TSJEREPNIN.SCL 9 Scale from Ivan Tsjerepnin's Santur Opera (1977) & suite from it Santur Live!
TUNERS1.SCL 12 The Tuner's Guide well temperament no. 1 (1840)
TUNERS2.SCL 12 The Tuner's Guide well temperament no. 2 (1840)
TUNERS3.SCL 12 The Tuner's Guide well temperament no. 3 (1840)
TURKISH.SCL 7 Turkish, 5-limit from Palmer on a Turkish music record, harmonic minor inverse
TURKISH_24.SCL 24 Ra'uf Yaqta Bey, 24 of 53 tones, Theoretical Turkish gamut
TURKISH_24A.SCL 24 Turkish gamut with schismatic simplifications

- U -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
URMAWI.SCL 7 al-Urmawi, one of twelve maqam rows. First tetrachord is Rast

- V -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
VALLOTTI.SCL 12 Vallotti & Young scale (Vallotti version)
VERTEX_CHROM.SCL 7 A vertex tetrachord from Chapter 5, 66.7 + 266.7 + 166.7 cents
VERTEX_CHROM2.SCL 7 A vertex tetrachord from Chapter 5, 83.3 + 283.3 + 133.3 cents
VERTEX_CHROM3.SCL 7 A vertex tetrachord from Chapter 5, 87.5 + 287.5 + 125 cents
VERTEX_CHROM4.SCL 7 A vertex tetrachord from Chapter 5, 88.9 + 288.9 + 122.2 cents
VERTEX_CHROM5.SCL 7 A vertex tetrachord from Chapter 5, 133.3 + 266.7 + 100 cents
VERTEX_DIAT.SCL 7 A vertex tetrachord from Chapter 5, 233.3 + 133.3 + 133.3 cents
VERTEX_DIAT10.SCL 7 A vertex tetrachord from Chapter 5, 212.5 + 162.5 + 125 cents
VERTEX_DIAT11.SCL 7 A vertex tetrachord from Chapter 5, 212.5 + 62.5 + 225 cents
VERTEX_DIAT12.SCL 7 A vertex tetrachord from Chapter 5, 200 + 125 + 175 cents
VERTEX_DIAT2.SCL 7 A vertex tetrachord from Chapter 5, 233.3 + 166.7 + 100 cents
VERTEX_DIAT3.SCL 7 A vertex tetrachord from Chapter 5, 75 + 225 + 200 cents
VERTEX_DIAT4.SCL 7 A vertex tetrachord from Chapter 5, 225 + 175 + 100 cents
VERTEX_DIAT5.SCL 7 A vertex tetrachord from Chapter 5, 87.5 + 237.5 + 175 cents
VERTEX_DIAT7.SCL 7 A vertex tetrachord from Chapter 5, 200 + 75 + 225 cents
VERTEX_DIAT8.SCL 7 A vertex tetrachord from Chapter 5, 100 + 175 + 225 cents
VERTEX_DIAT9.SCL 7 A vertex tetrachord from Chapter 5, 212.5 + 137.5 + 150 cents
VERTEX_SDIAT.SCL 7 A vertex tetrachord from Chapter 5, 87.5 + 187.5 + 225 cents
VERTEX_SDIAT2.SCL 7 A vertex tetrachord from Chapter 5, 75 + 175 + 250 cents
VERTEX_SDIAT3.SCL 7 A vertex tetrachord from Chapter 5, 25 + 225 + 250 cents
VERTEX_SDIAT4.SCL 7 A vertex tetrachord from Chapter 5, 66.7 + 183.3 + 250 cents
VERTEX_SDIAT5.SCL 7 A vertex tetrachord from Chapter 5, 233.33 + 16.67 + 250 cents
VICENTINO1.SCL 36 Usual Archicembalo tuning, 31-tET plus D,E,G,A,B a 10th tone higher
VICENTINO2.SCL 36 Alternative Archicembalo tuning, lower 3 rows the same upper 3 rows 3/2 higher
VICTORIAN.SCL 12 Form of Victorian temperament (1885)
VOGEL.SCL 21 Vogel's 21-tone Archytas system, see Divisions of the tetrachord
VOLANS.SCL 7 African scale according to Volans 0=G
VONG.SCL 7 Vong Co Dan Tranh scale, Vietnam
VRIES19-72.SCL 18 Leo de Vries 19/72 Through-Transposing-Tonality 18 tone scale
VRIES35-72.SCL 17 Leo de Vries 35/72 Through-Transposing-Tonality 17 tone scale
VRIES5-72.SCL 18 Leo de Vries 5/72 Through-Transposing-Tonality 18 tone scale
VRIES6-31.SCL 11 Leo de Vries 6/31 TTT used in "For 31-tone organ" (1995)

- W -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
WALKER_21.SCL 21 Douglas Walker, 1977, for "out of the fathomless dark/into the limitless light
WERCK1.SCL 20 Werckmeister I (just intonation)
WERCK3.SCL 12 Andreas Werckmeister's temperament III (the most famous one, 1681)
WERCK3_EB.SCL 12 Werckmeister III equal beating version, 5/4 beats twice 3/2
WERCK4.SCL 12 Andreas Werckmeister's temperament IV
WERCK5.SCL 12 Andreas Werckmeister's temperament V
WERCK6.SCL 12 Andreas Werckmeister's "septenarius" tuning VI
WERCK6_DUP.SCL 12 Andreas Werckmeister's VI in the interpretation by Dupont (1935)
WICKS.SCL 12 Mark Wicks' equal beating temperament for organs (1887)
WILSON-1.SCL 19 Wilson 19-tone, 1976
WILSON-2.SCL 19 Wilson 19-tone, 1975
WILSON-3.SCL 19 Wilson 19-tone
WILSON11.SCL 19 Wilson 11-limit 19-tone scale, 1977
WILSON5.SCL 22 Wilson's 22-tone 5-limit scale
WILSON7.SCL 22 Wilson's 22-tone 7-limit 'marimba' scale
WILSON7_2.SCL 22 Wilson 7-limit scale
WILSON7_3.SCL 22 Wilson 7-limit scale
WILSON_17.SCL 17 Wilson's 17-tone 5-limit scale
WILSON_BAG.SCL 7 Erv's bagpipe, mar '97, after Theodore Podnos (37-39).
WILSON_CLASS.SCL 12 Class Scale, Erv Wilson, 9 july 1967
WILSON_DIA1.SCL 22 Wilson Diaphonic cycles, tetrachordal form
WILSON_DIA2.SCL 22 Wilson Diaphonic cycle, conjunctive form
WILSON_DIA3.SCL 22 Wilson Diaphonic cycle on 3/2
WILSON_DIA4.SCL 22 Wilson Diaphonic cycle on 4/3
WILSON_DUO.SCL 22 Wilson 'duovigene'
WILSON_ENH.SCL 7 Wilson's Enharmonic & 3rd new Enharmonic on Hofmann's list of superp. 4chords
WILSON_ENH2.SCL 7 Wilson's 81/64 Enharmonic, a strong division of the 256/243 pyknon
WILSON_FACET.SCL 22 Wilson study in 'conjunct facets', Hexany based
WILSON_HELIX.SCL 12 Wilson's Helix Song, see David Rosenthal, Helix Song, XH 7&8, 1979
WILSON_HYPENH.SCL 7 Wilson's Hyperenharmonic, this genus has a CI of 9/7
WILSON_L1.SCL 22 Wilson 11-limit scale
WILSON_L2.SCL 22 Wilson 11-limit scale
WILSON_L3.SCL 22 Wilson 11-limit scale
WILSON_L4.SCL 22 Wilson 11-limit scale
WILSON_L5.SCL 22 Wilson 11-limit scale
WILSON_L6.SCL 22 Wilson 1 3 7 9 11 15 eikosany plus 9/8 and tritone. Used Stearns: Jewel
WINDOW.SCL 21 Window lattice
WINNINGTON.SCL 5 Winnington-Ingram's Spondeion
WRONSKI.SCL 12 Wronski's scale, from Jocelyn Godwin, "Music and the Occult", p. 105.
WURSCHMIDT.SCL 12 Wuerschmidt's normalised 12-tone system
WURSCHMIDT1.SCL 19 Wuerschmidt-1 19-tone scale
WURSCHMIDT2.SCL 19 Wuerschmidt-2 19-tone scale
WURSCHMIDT_31.SCL 31 Wuerschmidt's 31-tone system
WURSCHMIDT_31A.SCL 31 Wuerschmidt's 31-tone system with alternative tritone
WURSCHMIDT_53.SCL 53 Wuerschmidt's 53-tone system

- X -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
XENAKIS_CHROM.SCL 7 Xenakis's Byzantine Liturgical mode, 5 + 19 + 6 parts
XENAKIS_DIAT.SCL 7 Xenakis's Byzantine Liturgical mode, 12 + 11 + 7 parts
XENAKIS_SCHROM.SCL 7 Xenakis's Byzantine Liturgical mode, 7 + 16 + 7 parts
XYLOPHONE.SCL 5 Observed south Pacific pentatonic xylophone tuning

- Y -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
YASSER_6.SCL 6 Yasser Hexad, 6 of 19 as whole tone scale
YASSER_DIAT.SCL 12 Yasser's Supra-Diatonic, the flat notes are V,W,X,Y,and Z
YASSER_JI.SCL 12 Yasser's JI Scale, 2 Yasser hexads, a 121/91 apart
YOUNG-G.SCL 28 Gayle Young's Harmonium, see PNM 26(2): 204-212 (1988)
YOUNG-LM_GUITAR.SCL 12 LaMonte Young, Tuning of For Guitar '58. 1/1 March '92, inv.of Mersenne lute 1
YOUNG-LM_PIANO.SCL 12 LaMonte Young's Well-Tempered Piano
YOUNG.SCL 12 Vallotti & Young well temperament (Young version)
YOUNG2.SCL 12 Young 2 well temperament, ca. 1800
YUGO_BAGPIPE.SCL 12 Yugoslavian Bagpipe
YVES.SCL 7 St Yves's scale II from Jocelyn Godwin, "Music and the Occult", 1995.

- Z -

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Filename Size Description
ZALZAL.SCL 7 Tuning of popular flute by Al Farabi & Zalzal. First tetrachord is modern Rast
ZALZAL2.SCL 7 Zalzal's Scale, a medieval Islamic with Ditone Diatonic & 10/9 x 13/12 x 72/65
ZARLINO.SCL 7 Ptolemy's Intense Diatonic Systonon, also Zarlino's scale
ZESSTER_A.SCL 8 Harmonic six-star, group A, from Fokker
ZESSTER_B.SCL 8 Harmonic six-star, group B, from Fokker
ZESSTER_C.SCL 8 Harmonic six-star, group C on Eb, from Fokker
ZESSTER_MIX.SCL 16 Harmonic six-star, groups A, B and C mixed, from Fokker
ZIR_BOUZOURK.SCL 6 Zirafkend Bouzourk (IG #3, DF #9), from both Rouanet and Safi al-Din
ZOOMOOZ.SCL 31 Zoomoozophone tuning based on Partch's. Base freq. 392 Hz
ZWOLLE.SCL 12 Henri Arnaut De Zwolle. Pythagorean on G flat.

24 Apr 1998